[1] Pjetursson BE, Brägger U, Lang NP, et al. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) andimplant-supported FDPs and single crowns (SCs)[J]. Clin Oral Implants Res, 2007,18 Suppl 3:97-113. DOI: 10.1111/j.1600-0501.2007.01439.x. [2] Le Guéhennec L, Soueidan A, Layrolle P, et al.Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007,23(7):844-854. DOI: 10.1016/j.dental.2006.06.025. [3] Liang L, Song Y, Li L, et al.Adipose-derived stem cells combined with inorganic bovine bone in calvarial bone healing in rats with type 2 diabetes[J]. J Periodontol, 2014,85(4):601-609. DOI: 10.1902/jop.2013.120652. [4] Yamawaki I, Taguchi Y, Komasa S, et al.Effects of glucose concentration on osteogenic differentiation of type II diabetes mellitus rat bone marrow-derived mesenchymal stromal cells on a nano-scale modified titanium[J]. J Periodontal Res, 2017,52(4):761-771. DOI: 10.1111/jre.12446. [5] Pourmollaabbassi B, Karbasi S, Hashemibeni B.Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate[J]. Adv Biomed Res, 2016,5:156. DOI: 10.4103/2277-9175.188486. [6] Shaoki A, Xu JY, Sun H, et al.Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting[J]. Biofabrication, 2016,8(4):45014. DOI: 10.1088/1758-5090/8/4/045014. [7] Abduo J, Lyons K, Bennamoun M.Trends in computer-aided manufacturing in prosthodontics: a review of the available streams[J]. Int J Dent, 2014,2014:783948. DOI: 10.1155/2014/783948. [8] Barazanchi A, Li KC, Al-Amleh B, et al.Additive technology: update on current materials and applications in dentistry[J]. J Prosthodont, 2017,26(2):156-163. DOI: 10.1111/jopr.12510. [9] Ghosh S, Abanteriba S, Wong S, et al.Selective laser melted titanium alloys for hip implant applications: surface modification with new method of polymer grafting[J]. J Mech Behav Biomed Mater, 2018,87:312-324. DOI: 10.1016/j.jmbbm.2018.07.031. [10] Wally ZJ, Haque AM, Feteira A, et al.Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications[J]. J Mech Behav Biomed Mater, 2019,90:20-29. DOI: 10.1016/j.jmbbm.2018.08.047. [11] Rupp F, Scheideler L, Olshanska N, et al.Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces[J]. J Biomed Mater Res A, 2006,76(2):323-334. DOI: 10.1002/jbm.a.30518. [12] Rupp F, Scheideler L, Rehbein D, et al.Roughness induced dynamic changes of wettability of acid etched titanium implant modifications[J]. Biomaterials, 2004,25(7-8):1429-1438. DOI: 10.1016/j.biomaterials.2003.08.015. [13] Di Iorio D, Traini T, Degidi M, et al.Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study[J]. J Biomed Mater Res B Appl Biomater, 2005,74(1):636-642. DOI: 10.1002/jbm.b.30251. [14] Thomas KA, Kay JF, Cook SD, et al.The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials[J]. J Biomed Mater Res, 1987,21(12):1395-1414. DOI: 10.1002/jbm.820211205. [15] Buser D, Schenk RK, Steinemann S, et al.Influence of surface characteristics on bone integration of titanium implants. a histomorphometric study in miniature pigs[J]. J Biomed Mater Res, 1991,25(7):889-902. DOI: 10.1002/jbm.820250708. [16] Itälä AI, Ylänen HO, Ekholm C, et al.Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits[J]. J Biomed Mater Res, 2001,58(6):679-683. DOI: 10.1002/jbm.1069. [17] Ghosh S, Abanteriba S.Status of surface modification techniques for artificial hip implants[J]. Sci Technol Adv Mater, 2016,17(1):715-735. DOI: 10.1080/14686996.2016.1240575. |