[1] Jhong YT, Chao CY, Hung WC, et al.Effects of various polishing techniques on the surface characteristics of the Ti-6Al-4V alloy and on bacterial adhesion[J]. Coatings, 2020, 10(11): 1057. DOI: 10.3390/coatings10111057. [2] Sghaireen MG, Alrwuili MR, Alenzi NA, et al.Analysis of the cellular response to different dental implant surfaces: an in vitro study[J]. J Pharm Bioallied Sci, 2024,16(Suppl 3): S2521-S2523. DOI: 10.4103/jpbs.jpbs_329_24. [3] Wang B, Guo Y, Xu J, et al.Efficacy of bone defect therapy involving various surface treatments of titanium alloy implants: an in vivo and in vitro study[J]. Sci Rep, 2023,13(1):20116. DOI: 10.1038/s41598-023-47495-w. [4] Liu CF, Chang KC, Sun YS, et al.Combining sandblasting, alkaline etching, and collagen immobilization to promote cell growth on biomedical titanium implants[J]. Polymers (Basel), 2021,13(15):2550. DOI: 10.3390/polym13152550. [5] Ríos-Carrasco B, Lemos BF, Herrero-Climent M, et al.Effect of the acid-etching on grit-blasted dental implants to improve osseointegration: histomorphometric analysis of the bone-implant contact in the rabbit tibia model[J]. Coatings, 2021, 11(11): 1426. DOI: 10.3390/coatings11111426. [6] Anbarzadeh E, Mohammadi B.Improving the surface roughness of dental implant fixture by considering the size, angle and spraying pressure of sandblast particles[J]. J Bionic Eng, 2024, 21: 303-324. DOI: 10.1007/s42235-023-00422-1. [7] Karthik SK, Sreevidya B, Ramya TK, et al.Comparative analysis of surface modification techniques for assessing oral implant osseointegration: an animal study[J]. Cureus, 2024,16(2):e54014. DOI: 10.7759/cureus.54014. [8] Zhou W, Tangl S, Reich KM, et al.The influence of type 2 diabetes mellitus on the osseointegration of titanium implants with different surface modifications-a histomorphometric study in high-fat diet/low-dose streptozotocin-treated rats[J]. Implant Dent, 2019,28(1):11-19. DOI: 10.1097/ID.0000000000000836. [9] Bayrak M, Kocak-Oztug NA, Gulati K, et al.Influence of clinical decontamination techniques on the surface characteristics of SLA titanium implant[J]. Nanomaterials (Basel), 2022,12(24):4481. DOI: 10.3390/nano12244481. [10] Maharani AS, Ismiyati T, Aditama P, et al.Titanium oxide coating and acid etching on platelet activation in dental implants[J]. Majalah Kedokteran Gigi Indonesia, 2024,10(1): 31-37. DOI: 10.22146/majkedgiind.94366. [11] Anbarzadeh E, Mohammadi B, Azadzaeim M.Effects of acid etching parameters on the surface of dental implant fixtures treated by proposed coupled SLA-anodizing process[J]. J Mater Res, 2023,38(22):4951-4966. DOI: 10.1557/s43578-023-01205-4. [12] Kahm SH, Lee SH, Lim Y, et al.Osseointegration of dental implants after vacuum plasma surface treatment in vivo[J]. J Funct Biomater, 2024,15(10):278. DOI: 10.3390/jfb15100278. [13] de Sousa TKC, Maia FR, Pina S, et al. Anodic oxidation of 3D printed Ti6Al4V scaffold surfaces: in vitro studies[J]. Appl Sci, 2024,14(4):1656. DOI: 10.3390/app14041656. [14] Zhang Q, Pan RL, Wang H, et al.Nanoporous titanium implant surface accelerates osteogenesis via the Piezo1/Acetyl-CoA/β-catenin pathway[J]. Nano Lett, 2024,24(27):8257-8267. DOI: 10.1021/acs.nanolett.4c01101. [15] Li Y, You Y, Li B, et al.Improved cell adhesion and osseointegration on anodic oxidation modified titanium implant surface[J]. J Hard Tissue Biol, 2019,28(1):13-20. DOI: 10.2485/jhtb.28.13. [16] Yang J, Zhang H, Chan SM, et al.TiO2 nanotubes alleviate diabetes-induced osteogenetic inhibition[J]. Int J Nanomedicine, 2020,15:3523-3537. DOI: 10.2147/IJN.S237008. [17] Hou HH, Lee BS, Liu YC, et al.Vapor-induced pore-forming atmospheric-plasma-sprayed zinc-, strontium-, and magnesium-doped hydroxyapatite coatings on titanium implants enhance new bone formation-an in vivo and in vitro investigation[J]. Int J Mol Sci, 2023,24(5):4933. DOI: 10.3390/ijms24054933. [18] Shu T, Zhang Y, Sun G, et al.Enhanced osseointegration by the hierarchical micro-nano topography on selective laser melting Ti-6Al-4V dental implants[J]. Front Bioeng Biotechnol, 2020,8:621601. DOI: 10.3389/fbioe.2020.621601. [19] Iezzi G, Zavan B, Petrini M, et al.3D printed dental implants with a porous structure: the in vitro response of osteoblasts, fibroblasts, mesenchymal stem cells, and monocytes[J]. J Dent, 2024,140:104778. DOI: 10.1016/j.jdent.2023.104778. [20] Qin Z, He Y, Gao J, et al.Surface modification improving the biological activity and osteogenic ability of 3D printing porous dental implants[J]. Front Mater, 2023,10: 1183902. DOI: 10.3389/fmats.2023.1183902. [21] Mikinobu Goto, Akihiko Matsumine, Seiji Yamaguchi, et al.Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting[J]. J Biomater Appl, 2021,35(9):1153-1167. DOI: 10.1177/0885328220968218. [22] Santos A, da Silva RC, Hadad H, et al. Early peri-implant bone healing on laser-modified surfaces with and without hydroxyapatite coating: an in vivo study[J]. Biology (Basel), 2024,13(7):533. DOI: 10.3390/biology13070533. [23] Wang YC, Lin SH, Chien CS, et al.In vitro bioactivity and antibacterial effects of a silver-containing mesoporous bioactive glass film on the surface of titanium implants[J]. Int J Mol Sci, 2022,23(16):9291. DOI: 10.3390/ijms23169291. [24] Bergamo E, de Oliveira P, Campos T, et al. Osseointegration of implant surfaces in metabolic syndrome and type-2 diabetes mellitus[J]. J Biomed Mater Res B Appl Biomater, 2024,112(2):e35382. DOI: 10.1002/jbm.b.35382. [25] Ao J, Zhang X, You Y, et al.Bioinspired hybrid nanostructured PEEK implant with enhanced antibacterial and anti-inflammatory synergy[J]. ACS Appl Mater Interfaces, 2024,16(30):38989-39004. DOI: 10.1021/acsami.4c06322. [26] Lee S, Chang YY, Lee J, et al.Surface engineering of titanium alloy using metal-polyphenol network coating with magnesium ions for improved osseointegration[J]. Biomater Sci, 2020,8(12):3404-3417. DOI: 10.1039/d0bm00566e. [27] Skjöldebrand C, Tipper JL, Hatto P, et al.Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants[J]. Mater Today Bio, 2022,15:100270. DOI: 10.1016/j.mtbio.2022.100270. [28] Bandyopadhyay A, Mitra I, Goodman SB, et al.Improving biocompatibility for next generation of metallic implants[J]. Prog Mater Sci, 2023,133:101053. DOI: 10.1016/j.pmatsci.2022.101053. [29] Chen H, Song G, Xu T, et al.Biomaterial scaffolds for periodontal tissue engineering[J]. J Funct Biomater, 2024,15(8):233. DOI: 10.3390/jfb15080233. [30] Amani H, Arzaghi H, Bayandori M, et al.Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques[J]. Adv mater interfaces, 2019, 6(13): 1900572. DOI: 10.1002/admi.201900572. [31] Zhang B, Li J, He L, et al.Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration[J]. Acta Biomater, 2020,114:431-448. DOI: 10.1016/j.actbio.2020.07.024. [32] Zhao K, Ono M, Mu X, et al. Optimizing β-TCP with E-rhBMP-2-infused fibrin for vertical bone regeneration in a mouse calvarium model[J]. Regen Biomater, 2025,12:rbae144. DOI: 10.1093/rb/rbae144. [33] Zapata MEV, Hernandez JHM, Grande Tovar CD, et al.Osseointegration of antimicrobial acrylic bone cements modified with graphene oxide and chitosan[J]. Appl Sci, 2020, 10(18): 6528. DOI: 10.3390/app10186528. [34] Yuan P, Chen M, Lu X, et al.Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration[J]. J Mater Chem B, 2024,12(41):10516-10549. DOI: 10.1039/d4tb01714e. |