[1] Niu Y, Wang Z, Shi Y, et al.Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches[J]. Bioact Mater, 2021,6(1):244-261. DOI: 10.1016/j.bioactmat.2020.08.012. [2] Hoeffel G, Ginhoux F.Fetal monocytes and the origins of tissue-resident macrophages[J]. Cell Immunol, 2018,330:5-15. DOI: 10.1016/j.cellimm.2018.01.001. [3] Murray PJ.Macrophage Polarization[J]. Annu Rev Physiol, 2017,79:541-566. DOI: 10.1146/annurev-physiol-022516-034339. [4] De Santa F, Vitiello L, Torcinaro A, et al.The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration[J]. Antioxid Redox Signal, 2019,30(12):1553-1598. DOI: 10.1089/ars.2017.7420. [5] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al.Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018,233(9):6425-6440. DOI: 10.1002/jcp.26429. [6] Spiller KL, Anfang RR, Spiller KJ, et al.The role of macrophage phenotype in vascularization of tissue engineering scaffolds[J]. Biomaterials, 2014,35(15):4477-4488. DOI: 10.1016/j.biomaterials.2014.02.012. [7] Pajarinen J, Lin T, Gibon E, et al.Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019,196:80-89. DOI: 10.1016/j.biomaterials.2017.12.025. [8] Ding J, Lei L, Liu S, et al.Macrophages are necessary for skin regeneration during tissue expansion[J]. J Transl Med, 2019,17(1):36. DOI: 10.1186/s12967-019-1780-z. [9] Löffler J, Sass FA, Filter S, et al.Compromised bone healing in aged rats is associated with impaired m2 macrophage function[J]. Front Immunol, 2019,10:2443. DOI: 10.3389/fimmu.2019.02443. [10] Graney PL, Ben-Shaul S, Landau S, et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues[J]. Sci Adv, 2020,6(18):eaay 6391. DOI: 10.1126/sciadv.aay6391. [11] Trindade R, Albrektsson T, Galli S, et al.Osseointegration and foreign body reaction: titanium implants activate the immune system and suppress bone resorption during the first 4 weeks after implantation[J]. Clin Implant Dent Relat Res, 2018,20(1):82-91. DOI: 10.1111/cid.12578. [12] Wang X, Li Y, Feng Y, et al.Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model[J]. J Periodontal Res, 2019,54(4):329-338. DOI: 10.1111/jre.12633. [13] Liu Y, Rath B, Tingart M, et al.Role of implants surface modification in osseointegration: a systematic review[J]. J Biomed Mater Res A, 2020,108(3):470-484. DOI: 10.1002/jbm.a.36829. [14] Klopfleisch R, Jung F.The pathology of the foreign body reaction against biomaterials[J]. J Biomed Mater Res A, 2017,105(3):927-940. DOI: 10.1002/jbm.a.35958. [15] LoPresti ST, Brown BN. Effect of source animal age upon macrophage response to extracellular matrix biomaterials[J]. J Immunol Regen Med, 2018,1:57-66. DOI: 10.1016/j.regen.2018.03.004. [16] Li J, Jiang X, Li H, et al.Tailoring materials for modulation of macrophage fate[J]. Adv Mater, 2021,33(12):e2004172. DOI: 10.1002/adma.202004172. [17] Madden LR, Mortisen DJ, Sussman EM, et al.Proangiogenic scaffolds as functional templates for cardiac tissue engineering[J]. Proc Natl Acad Sci USA, 2010,107(34):15211-15216. DOI: 10.1073/pnas.1006442107. [18] Zhang Z, Xie Y, Pan H, et al.Influence of patterned titanium coatings on polarization of macrophage and osteogenic differentiation of bone marrow stem cells[J]. J Biomater Appl, 2018,32(7):977-986. DOI: 10.1177/0885328217746802. [19] Klopfleisch R.Macrophage reaction against biomaterials in the mouse model-Phenotypes, functions and markers[J]. Acta Biomater, 2016,43:3-13. DOI: 10.1016/j.actbio.2016.07.003. [20] Witherel CE, Abebayehu D, Barker TH, et al.Macrophage and fibroblast interactions in biomaterial-mediated fibrosis[J]. Adv Healthc Mater, 2019,8(4):e1801451. DOI: 10.1002/adhm.201801451. [21] Mathew A, Vaquette C, Hashimi S, et al.Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J]. Adv Healthc Mater, 2017,1601345(1-12). DOI: 10.1002/adhm.201601345. [22] Sun X, Ma Z, Zhao X, et al.Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus[J]. Bioact Mater, 2021,6(3):757-769. DOI: 10.1016/j.bioactmat.2020.08.030. [23] Li K, Hu D, Xie Y, et al.Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions[J]. Nanotechnology, 2018,29(8):084001. DOI: 10.1088/1361-6528/aaa2b4. [24] Chen Z, Bachhuka A, Han S, et al.Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications[J]. ACS Nano, 2017,11(5):4494-4506. DOI: 10.1021/acsnano.6b07808. [25] Zhu Y, Liang H, Liu X, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration[J]. Sci Adv, 2021,7(14) eabf 6654. DOI: 10.1126/sciadv.abf6654. [26] Liu Y, Cao LY, Zhang S, et al.Effect of hierarchical porous scaffold on osteoimmunomodulation and bone formation[J]. Applied Materials Today, 2020, 20(6): 100779.DOI:10.1016/j.apmt.2020.100779 [27] Zhang XY, Fang G, Zhou J.Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review[J]. Materials (Basel), 2017,10(1): 50.DOI: 10.3390/ma10010050. |