中国口腔种植学杂志 ›› 2022, Vol. 27 ›› Issue (5): 317-321.DOI: 10.12337/zgkqzzxzz.2022.10.010
钱印杰, 姒蜜思
收稿日期:
2022-08-14
出版日期:
2022-10-30
发布日期:
2022-11-01
通讯作者:
姒蜜思,Email:misi_si@zju.edu.cn, 电话:0571-87217419
基金资助:
Qian Yinjie, Si Misi
Received:
2022-08-14
Online:
2022-10-30
Published:
2022-11-01
Contact:
Si Misi, Email: misi_si@zju.edu.cn, Tel:0086-571-87217419
Supported by:
摘要: 快速而稳定的骨结合是种植体成功的重要保证。其中,种植体表面是影响骨结合的重要因素之一。亲水性大颗粒喷砂酸蚀表面种植体可以促进骨量充足区域的早期骨结合,然而,其在骨缺损区域的作用尚不明确。本文就其在骨缺损区域的研究做一综述,以用于指导临床。
钱印杰,等姒蜜思. 亲水性大颗粒喷砂酸蚀表面种植体促进骨缺损区域骨结合的研究进展[J]. 中国口腔种植学杂志, 2022, 27(5): 317-321. DOI: 10.12337/zgkqzzxzz.2022.10.010
Qian Yinjie, Si Misi. Progress in the study of sandblasted large-grit acid-etched hydrophilic surface implants to promote osseointegration in areas of bone defects[J].Chinese Journal of Oral Implantology, 2022, 27(5): 317-321.DOI: 10.12337/zgkqzzxzz.2022.10.010.
[1] Omori Y, Botticelli D, Ferri M, et al.Argon bioactivation of implants installed simultaneously to maxillary sinus lifting without graft. An experimental study in rabbits[J]. Dent J (Basel), 2021,9(9):105.DOI: 10.3390/dj9090105. [2] Milleret V, Tugulu S, Schlottig F, et al.Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation[J]. Eur Cell Mater, 2011,21:430-444. DOI: 10.22203/ecm.v021a32. [3] Funato A, Yamada M, Ogawa T.Success rate, healing time, and implant stability of photofunctionalized dental implants[J]. Int J Oral Maxillofac Implants, 2013,28(5):1261-1271. DOI: 10.11607/jomi.3263. [4] Zhao G, Schwartz Z, Wieland M, et al.High surface energy enhances cell response to titanium substrate microstructure[J]. J Biomed Mater Res A, 2005,74(1):49-58. DOI: 10.1002/jbm.a.30320. [5] Schwarz F, Wieland M, Schwartz Z, et al.Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants[J]. J Biomed Mater Res B Appl Biomater, 2009,88(2):544-557. DOI: 10.1002/jbm.b.31233. [6] Buser D, Broggini N, Wieland M, et al.Enhanced bone apposition to a chemically modified SLA titanium surface[J]. J Dent Res, 2004,83(7):529-533. DOI: 10.1177/154405910408300704. [7] Wennerberg A, Svanborg LM, Berner S, et al.Spontaneously formed nanostructures on titanium surfaces[J]. Clin Oral Implants Res, 2013,24(2):203-209. DOI: 10.1111/j.1600-0501.2012.02429.x. [8] Wennerberg A, Jimbo R, Stübinger S, et al.Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia[J]. Clin Oral Implants Res, 2014,25(9):1041-1050. DOI: 10.1111/clr.12213. [9] Lee J, Yoo JM, Amara HB, et al.Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs[J]. J Periodontal Implant Sci, 2019,49(1):25-38. DOI: 10.5051/jpis.2019.49.1.25. [10] Offermanns V, Andersen OZ, Sillassen M, et al.A comparative in vivo study of strontium-functionalized and SLActive™ implant surfaces in early bone healing[J]. Int J Nanomedicine, 2018,13:2189-2197. DOI: 10.2147/IJN.S161061. [11] Wennerberg A, Jimbo R, Stübinger S, et al.Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia[J]. Clin Oral Implants Res, 2014,25(9):1041-1050. DOI: 10.1111/clr.12213. [12] Favero V, Lang NP, Rossi F, et al.Peri-implant tissues morphometry at SLActive surfaces. An experimental study in the dog[J]. Clin Oral Implants Res, 2016,27(8):993-998. DOI: 10.1111/clr.12719. [13] Ganeles J, Zöllner A, Jackowski J, et al.Immediate and early loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study[J]. Clin Oral Implants Res, 2008,19(11):1119-1128. DOI: 10.1111/j.1600-0501.2008.01626.x. [14] Zöllner A, Ganeles J, Korostoff J, et al.Immediate and early non-occlusal loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: interim results from a prospective multicenter randomized-controlled study[J]. Clin Oral Implants Res, 2008,19(5):442-450. DOI: 10.1111/j.1600-0501.2007.01517.x. [15] Nicolau P, Korostoff J, Ganeles J, et al.Immediate and early loading of chemically modified implants in posterior jaws: 3-year results from a prospective randomized multicenter study[J]. Clin Implant Dent Relat Res, 2013,15(4):600-612. DOI: 10.1111/j.1708-8208.2011.00418.x. [16] Nicolau P, Guerra F, Reis R, et al.10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface[J]. Quintessence Int, 2019,50(2):114-124. DOI: 10.3290/j.qi.a41664. [17] Makowiecki A, Hadzik J, Błaszczyszyn A, et al.An evaluation of superhydrophilic surfaces of dental implants - a systematic review and meta-analysis[J]. BMC Oral Health, 2019,19(1):79. DOI: 10.1186/s12903-019-0767-8. [18] Raghoebar GM, Onclin P, Boven GC, et al. Long-term effectiveness of maxillary sinus floor augmentation: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019,46 Suppl 21:307-318. DOI: 10.1111/jcpe.13055. [19] Boyne PJ, James RA.Grafting of the maxillary sinus floor with autogenous marrow and bone[J]. J Oral Surg, 1980,38(8):613-616. [20] Tatum H Jr.Maxillary and sinus implant reconstructions[J]. Dent Clin North Am, 1986,30(2):207-229. [21] Summers RB. A new concept in maxillary implant surgery: the osteotome technique[J]. Compendium, 1994,15(2):152, 154-156, 158 passim; quiz 162. [22] Alayan J, Vaquette C, Saifzadeh S, et al.Comparison of early osseointegration of SLA(®) and SLActive(®) implants in maxillary sinus augmentation: a pilot study[J]. Clin Oral Implants Res, 2017,28(11):1325-1333. DOI: 10.1111/clr.12988. [23] Philipp A, Duncan W, Roos M, et al.Comparison of SLA® or SLActive® implants placed in the maxillary sinus with or without synthetic bone graft materials--an animal study in sheep[J]. Clin Oral Implants Res, 2014,25(10):1142-1148. DOI: 10.1111/clr.12255. [24] Leocádio A, Silva M Jr, de Oliveira G, et al. Osseointegration of different implant surfaces in areas grafted with deproteinized bovine bone associated or not with fresh bone marrow-Preclinical study in rabbits[J]. Clin Oral Implants Res, 2021,32(6):767-775. DOI: 10.1111/clr.13746. [25] Qian SJ, Mo JJ, Shi JY, et al.Endo-sinus bone formation after transalveolar sinus floor elevation without grafting with simultaneous implant placement: Histological and histomorphometric assessment in a dog model[J]. J Clin Periodontol, 2018,45(9):1118-1127. DOI: 10.1111/jcpe.12975. [26] Kuchler U, Chappuis V, Bornstein MM, et al.Development of implant stability quotient values of implants placed with simultaneous sinus floor elevation - results of a prospective study with 109 implants[J]. Clin Oral Implants Res, 2017,28(1):109-115. DOI: 10.1111/clr.12768. [27] Nedir R, Nurdin N, Khoury P, et al.Osteotome sinus floor elevation with and without grafting material in the severely atrophic maxilla. A 1-year prospective randomized controlled study[J]. Clin Oral Implants Res, 2013,24(11):1257-1264. DOI: 10.1111/j.1600-0501.2012.02569.x. [28] Braut V, Bornstein MM, Belser U, et al.Thickness of the anterior maxillary facial bone wall-a retrospective radiographic study using cone beam computed tomography[J]. Int J Periodontics Restorative Dent, 2011,31(2):125-131. [29] Januário AL, Duarte WR, Barriviera M, et al.Dimension of the facial bone wall in the anterior maxilla: a cone-beam computed tomography study[J]. Clin Oral Implants Res, 2011,22(10):1168-1171. DOI: 10.1111/j.1600-0501.2010.02086.x. [30] Araújo MG, Lindhe J.Dimensional ridge alterations following tooth extraction. An experimental study in the dog[J]. J Clin Periodontol, 2005,32(2):212-218. DOI: 10.1111/j.1600-051X.2005.00642.x. [31] Buser D, Chappuis V, Kuchler U, et al.Long-term stability of early implant placement with contour augmentation[J]. J Dent Res, 2013,92(12 Suppl):176S-182S. DOI: 10.1177/0022034513504949. [32] Buser D, Halbritter S, Hart C, et al.Early implant placement with simultaneous guided bone regeneration following single-tooth extraction in the esthetic zone: 12-month results of a prospective study with 20 consecutive patients[J]. J Periodontol, 2009,80(1):152-162. DOI: 10.1902/jop.2009.080360. [33] Buser D, Wittneben J, Bornstein MM, et al.Stability of contour augmentation and esthetic outcomes of implant-supported single crowns in the esthetic zone: 3-year results of a prospective study with early implant placement postextraction[J]. J Periodontol, 2011,82(3):342-349. DOI: 10.1902/jop.2010.100408. [34] Donos N, Horvath A, Mezzomo LA, et al.The role of immediate provisional restorations on implants with a hydrophilic surface: a randomised, single-blind controlled clinical trial[J]. Clin Oral Implants Res, 2018,29(1):55-66. DOI: 10.1111/clr.13038. [35] Donos N, Horvath A, Calciolari E, et al.Immediate provisionalization of bone level implants with a hydrophilic surface. A five-year follow-up of a randomized controlled clinical trial[J]. Clin Oral Implants Res, 2019,30(2):139-149. DOI: 10.1111/clr.13400. [36] Botticelli D, Berglundh T, Buser D, et al.The jumping distance revisited: an experimental study in the dog[J]. Clin Oral Implants Res, 2003,14(1):35-42. DOI: 10.1034/j.1600-0501.2003.140105.x. [37] Lai HC, Zhuang LF, Zhang ZY, et al.Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs[J]. Clin Oral Implants Res, 2009,20(3):247-253. DOI: 10.1111/j.1600-0501.2008.01651.x. [38] El Chaar E, Zhang L, Zhou Y, et al.Osseointegration of superhydrophilic implants placed in defect grafted bones[J]. Int J Oral Maxillofac Implants, 2019,34(2):443-450. DOI: 10.11607/jomi.7172. [39] Schwarz F, Herten M, Sager M, et al.Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs[J]. J Clin Periodontol, 2007,34(1):78-86. DOI: 10.1111/j.1600-051X.2006.01008.x. [40] Schwarz F, Sager M, Ferrari D, et al.Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive) and conventional SLA titanium implants: an immunohistochemical study in dogs[J]. J Clin Periodontol, 2008,35(1):64-75. DOI: 10.1111/j.1600-051X.2007.01159.x. [41] Schwarz F, Jung RE, Fienitz T, et al.Impact of guided bone regeneration and defect dimension on wound healing at chemically modified hydrophilic titanium implant surfaces: an experimental study in dogs[J]. J Clin Periodontol, 2010,37(5):474-485. DOI: 10.1111/j.1600-051X.2010.01551.x. [42] Verket A, Müller B, Wohlfahrt JC, et al.TiO(2) scaffolds in peri-implant dehiscence defects: an experimental pilot study[J]. Clin Oral Implants Res, 2016,27(10):1200-1206. DOI: 10.1111/clr.12725. [43] Dos Santos Trento G, Hassumi JS, Buzo Frigério P, et al. Gene expression, immunohistochemical and microarchitectural evaluation of bone formation around two implant surfaces placed in bone defects filled or not with bone substitute material[J]. Int J Implant Dent, 2020,6(1):80. DOI: 10.1186/s40729-020-00279-7. [44] Rupp F, Scheideler L, Olshanska N, et al.Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces[J]. J Biomed Mater Res A, 2006,76(2):323-334. DOI: 10.1002/jbm.a.30518. [45] Hong J, Kurt S, Thor A.A hydrophilic dental implant surface exhibits thrombogenic properties in vitro[J]. Clin Implant Dent Relat Res, 2013,15(1):105-112. DOI: 10.1111/j.1708-8208.2011.00362.x. [46] 李雪菁, 邱小亥, 赵宝红. 亲水种植体促进骨整合机制研究进展[J].中国实用口腔科杂志,2020,13(8):501-505. DOI: 10.19538/j.kq.2020.08.010. |
[1] | 周延民, 秦秋月. 上颌窦三维成骨模式促进上颌窦内成骨的临床意义[J]. 中国口腔种植学杂志, 2023, 28(2): 69-76. |
[2] | 余正荣, 郭水根, 杨晶晶, 毛卫华, 魏洪武. 上颌窦解剖因素对穿牙槽嵴上颌窦底提升骨增量材料改建影响的研究[J]. 中国口腔种植学杂志, 2023, 28(2): 82-89. |
[3] | 龚佳明, 赵瑞敏, 张启航, 余占海, 苏琳涵. 自体血小板浓缩物用于上颌窦底提升的系统评价再评价[J]. 中国口腔种植学杂志, 2023, 28(2): 102-108. |
[4] | 陈德平, 刘倩, 皮雪敏, 潘红, 任斌, 宿玉成. 穿牙槽嵴上颌窦底提升的临床程序[J]. 中国口腔种植学杂志, 2023, 28(2): 128-132. |
[5] | 中华口腔医学会口腔种植专业委员会. 上颌窦底提升骨增量材料的专家共识:骨代用品[J]. 中国口腔种植学杂志, 2023, 28(1): 3-8. |
[6] | 周延民, 朱悦萌. 上颌窦三维成骨模式构建[J]. 中国口腔种植学杂志, 2023, 28(1): 9-18. |
[7] | 徐亦凡, 叶颖. 美学区牙槽骨解剖特征对引导骨再生效果的影响[J]. 中国口腔种植学杂志, 2023, 28(1): 47-52. |
[8] | 邓磊, 黄海涛. 上颌窦底提升术后窦腔内成骨机制的研究进展[J]. 中国口腔种植学杂志, 2023, 28(1): 53-57. |
[9] | 皮雪敏, 刘倩, 陈德平, 任斌, 潘红, 宿玉成. 上颌窦底提升方案的决策原则(三)[J]. 中国口腔种植学杂志, 2023, 28(1): 58-66. |
[10] | 中华口腔医学会口腔种植专业委员会. 上颌窦底提升中骨增量材料的专家共识:生物活性制剂、细胞疗法与不植入骨增量材料的上颌窦底提升[J]. 中国口腔种植学杂志, 2022, 27(6): 329-333. |
[11] | 季平. 3D打印个性化钛网用于复杂骨缺损增量治疗的研究进展[J]. 中国口腔种植学杂志, 2022, 27(6): 334-339. |
[12] | 赵满, 郑亚琪, 闫征斌, 李晓敏, 杨晓喻. 下颌骨纤维骨性病变致种植失败一例及文献回顾[J]. 中国口腔种植学杂志, 2022, 27(6): 346-351. |
[13] | 皮雪敏, 陈德平, 刘倩, 任斌, 潘红, 宿玉成. 上颌窦底提升方案的决策原则(二)[J]. 中国口腔种植学杂志, 2022, 27(6): 387-392. |
[14] | 中华口腔医学会口腔种植专业委员会. 上颌窦底提升并发症的专家共识:种植体脱入上颌窦(第一版)[J]. 中国口腔种植学杂志, 2022, 27(5): 264-268. |
[15] | 中华口腔医学会口腔种植专业委员会. 上颌窦底提升中骨增量材料的专家共识:自体骨[J]. 中国口腔种植学杂志, 2022, 27(5): 269-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||