Chinese Journal of Oral Implantology ›› 2023, Vol. 28 ›› Issue (1): 9-18.DOI: 10.12337/zgkqzzxzz.2023.02.003
• Special Articles • Previous Articles Next Articles
Zhou Yanmin, Zhu Yuemeng
Received:
2022-10-25
Online:
2023-02-28
Published:
2023-03-07
Contact:
Zhou Yanmin, zhouym@jlu.edu.cn, Tel: 0086-431-88796025
Zhou Yanmin, Zhu Yuemeng. Construction of the 3-dimensional osteogenesis model for maxillary sinus[J]. Chinese Journal of Oral Implantology, 2023, 28(1): 9-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2023.02.003
[1] Al-Dajani M.Recent trends in sinus lift surgery and their clinical implications[J]. Clin Implant Dent Relat Res, 2016, 18(1):204-212. DOI: 10.1111/cid.12275. [2] Falah M, Srouji S.Raised Schneiderian membrane compared with peeled bony walls in the formation of bone[J]. Br J Oral Maxillofac Surg, 2016, 54(1):115-116. DOI: 10.1016/j.bjoms.2015.10.030. [3] Srouji S, Ben-David D, Lotan R, et al.The innate osteogenic potential of the maxillary sinus (Schneiderian) membrane: an ectopic tissue transplant model simulating sinus lifting[J]. Int J Oral Maxillofac Surg, 2010, 39(8):793-801. DOI: 10.1016/j.ijom.2010.03.009. [4] Cricchio G, Palma VC, Faria PE, et al.Histological outcomes on the development of new space-making devices for maxillary sinus floor augmentation[J]. Clin Implant Dent Relat Res, 2011, 13(3):224-230. DOI: 10.1111/j.1708-8208.2009.00208.x. [5] Srouji S, Kizhner T, Ben David D, et al.The Schneiderian membrane contains osteoprogenitor cells: in vivo and in vitro study[J]. Calcif Tissue Int, 2009, 84(2):138-145. DOI: 10.1007/s00223-008-9202-x. [6] Choi Y, Lee JS, Kim YJ, et al.Recombinant human bone morphogenetic protein-2 stimulates the osteogenic potential of the Schneiderian membrane: a histometric analysis in rabbits[J]. Tissue Eng Part A, 2013, 19(17-18):1994-2004. DOI: 10.1089/ten.TEA.2012.0724. [7] Gruber R, Kandler B, Fuerst G, et al.Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro[J]. Clin Oral Implants Res, 2004, 15(5):575-580. DOI: 10.1111/j.1600-0501.2004.01062.x. [8] Stacchi C, Lombardi T, Ottonelli R, et al.New bone formation after transcrestal sinus floor elevation was influenced by sinus cavity dimensions: a prospective histologic and histomorphometric study[J]. Clin Oral Implants Res, 2018, 29(5):465-479. DOI: 10.1111/clr.13144. [9] Lombardi T, Stacchi C, Berton F, et al.Influence of maxillary sinus width on new bone formation after transcrestal sinus floor elevation: a proof-of-concept prospective cohort study[J]. Implant Dent, 2017, 26(2):209-216. DOI: 10.1097/ID.0000000000000554. [10] 林柏均, 吕鸣樾, 袁泉. 影响经牙槽嵴顶上颌窦底提升术成骨效果的解剖因素分析[J]. 口腔医学, 2022, 42(3): 193-199. DOI: 10.13591/j.cnki.kqyx.2022.03.001. [11] Velloso GR, Vidigal GM Jr, de Freitas MM, et al. Tridimensional analysis of maxillary sinus anatomy related to sinus lift procedure[J]. Implant Dent, 2006, 15(2):192-196. DOI: 10.1097/01.id.0000223233.29454.77. [12] 郑小菲, 莫安春, 朱娟芳, 等. 上颌窦解剖因素对经牙槽嵴顶上颌窦底提升术成骨效果的影响[J]. 华西口腔医学杂志, 2020, 38(06):652-656. [13] Guo J, Weng J, Rong Q, et al.Investigation of multipotent postnatal stem cells from human maxillary sinus membrane[J]. Sci Rep, 2015, 5:11660. DOI: 10.1038/srep11660. [14] 于继泽, 刘艺萍, 吕慧欣, 等. 施耐德膜成骨潜能及其影响因素的研究进展[J]. 中华口腔医学杂志, 2019, 54(3):209-213. DOI: 10.3760/cma.j.issn.1002-0098.2019.03.013. [15] Wang Y, Zhang Y, Miron RJ.Health, maintenance, and recovery of soft tissues around implants[J]. Clin Implant Dent Relat Res. 2016,18(3):618-634. DOI: 10.1111/cid.12343. [16] Osborn JF, Newesely H.The material science of calcium phosphate ceramics[J]. Biomaterials, 1980, 1(2):108-111. DOI: 10.1016/0142-9612(80)90009-5. [17] Thiem DG, Adam M, Ganz C, et al.The implant surface and its role in affecting the dynamic processes of bone remodeling by means of distance osteogenesis: a comparative in vivo study[J]. Int J Oral Maxillofac Implants, 2019, 34(1):133-140. DOI: 10.11607/jomi.6729. [18] Kim UG, Choi JY, Lee JB, et al.Platelet-rich plasma alone is unable to trigger contact osteogenesis on titanium implant surfaces[J]. Int J Implant Dent, 2022, 8(1):25. DOI: 10.1186/s40729-022-00427-1. [19] Buser D, Dula K, Hess D, et al.Localized ridge augmentation with autografts and barrier membranes[J]. Periodontol 2000, 1999, 19:151-163. DOI: 10.1111/j.1600-0757.1999.tb00153.x. [20] Boyan BD, Lohmann CH, Sisk M, et al.Both cyclooxygenase-1 and cyclooxygenase-2 mediate osteoblast response to titanium surface roughness[J]. J Biomed Mater Res, 2001, 55(3):350-359. DOI: 10.1002/1097-4636(20010605)55:3<350::aidjbm1023>3.0.co;2-m. [21] Nasatzky E, Gultchin J, Schwartz Z.The role of surface roughness in promoting osteointegration[J]. Refuat Hapeh Vehashinayim (1993), 2003, 20(3):8-19, 98. [22] Brånemark PI, Hansson BO, Adell R, et al.Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period[J]. Scand J Plast Reconstr Surg Suppl. 1977,16: 1-132. [23] Buser D, Weber HP, Bragger U, et al.Tissue integration of one-stage ITI implants: 3-year results of a longitudinal study with hollow-cylinder and hollow-screw implants[J]. Int J Oral Maxillofac Implants, 1991, 6(4):405-412. [24] Ting M, Jefferies SR, Xia W, et al.Classification and effects of implant surface modification on the bone: human cell-based in vitro studies[J]. J Oral Implantol, 2017, 43(1):58-83. DOI: 10.1563/aaid-joi-D-16-00079. [25] Junker R, Dimakis A, Thoneick M, et al. Effects of implant surface coatings and composition on bone integration: a systematic review[J]. Clin Oral Implants Res, 2009, 20 Suppl 4:185-206. DOI: 10.1111/j.1600-0501.2009.01777.x. [26] Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review[J]. Clin Oral Implants Res, 2009, 20 (Suppl) 4:172-184. DOI: 10.1111/j.1600-0501.2009.01775.x. [27] Crespi R, Capparé P, Crespi G, et al.Immediate implant placement in sockets with asymptomatic apical periodontitis[J]. Clin Implant Dent Relat Res, 2017, 19(1):20-27. DOI: 10.1111/cid.12422. [28] Strauss FJ, Nasirzade J, Kargarpoor Z, et al.Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies[J]. Clin Oral Investig, 2020, 24(2):569-584. DOI: 10.1007/s00784-019-03156-9. [29] Buser D, Schenk RK, Steinemann S, et al.Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs[J]. J Biomed Mater Res, 1991, 25(7):889-902. DOI: 10.1002/jbm.820250708. [30] Gahlert M, Gudehus T, Eichhorn S, et al.Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs[J]. Clin Oral Implants Res, 2007, 18(5):662-668. DOI: 10.1111/j.1600-0501.2007.01401.x. [31] Wall I, Donos N, Carlqvist K, et al.Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro[J]. Bone, 2009, 45(1):17-26. DOI: 10.1016/j.bone.2009.03.662. [32] Boyan BD, Lotz EM, Schwartz Z.Roughness and hydrophilicity as osteogenic biomimetic surface properties[J]. Tissue Eng Part A, 2017, 23(23-24):1479-1489. DOI: 10.1089/ten.TEA.2017.0048. [33] Fischer K, Stenberg T.Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant-supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue[J]. Clin Implant Dent Relat Res, 2012, 14(6):808-815. DOI: 10.1111/j.1708-8208.2011.00389.x. [34] Wittneben JG, Buser D, Salvi GE, et al.Complication and failure rates with implant-supported fixed dental prostheses and single crowns: a 10-year retrospective study[J]. Clin Implant Dent Relat Res, 2014, 16(3):356-364. DOI: 10.1111/cid.12066. [35] Olivares-Navarrete R, Rodil SE, Hyzy SL, et al.Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces[J]. Biomaterials, 2015, 51:69-79. DOI: 10.1016/j.biomaterials.2015.01.035. [36] Li H, Huang J, Wang Y, et al.Nanoscale modification of titanium implants improves behaviors of bone mesenchymal stem cells and osteogenesis in vivo[J]. Oxid Med Cell Longev, 2022, 2022:2235335. DOI: 10.1155/2022/2235335. [37] Asri R, Harun W, Samykano M, et al.Corrosion and surface modification on biocompatible metals: a review[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77:1261-1274. DOI: 10.1016/j.msec.2017.04.102. [38] Park JW, Tsutsumi Y, Park EK.Osteogenic differentiation of human mesenchymal stem cells modulated by surface manganese chemistry in SLA titanium implants[J]. Biomed Res Int, 2022, 2022:5339090. DOI: 10.1155/2022/5339090. [39] Gittens RA, Scheideler L, Rupp F, et al.A review on the wettability of dental implant surfaces II: biological and clinical aspects[J]. Acta Biomater, 2014, 10(7):2907-2918. DOI: 10.1016/j.actbio.2014.03.032. [40] Kohavi D, Badihi L, Rosen G, et al.An in vivo method for measuring the adsorption of plasma proteins to titanium in humans[J]. Biofouling, 2013, 29(10):1215-1224. DOI: 10.1080/08927014.2013.834332. [41] Jimbo R, Sawase T, Baba K, et al.Enhanced initial cell responses to chemically modified anodized titanium[J]. Clin Implant Dent Relat Res, 2008, 10(1):55-61. DOI: 10.1111/j.1708-8208.2007.00061.x. [42] Zhao G, Schwartz Z, Wieland M, et al.High surface energy enhances cell response to titanium substrate microstructure[J]. J Biomed Mater Res A, 2005, 74(1):49-58. DOI: 10.1002/jbm.a.30320. [43] Lim JY, Taylor AF, Li Z, et al.Integrin expression and osteopontin regulation in human fetal osteoblastic cells mediated by substratum surface characteristics[J]. Tissue Eng, 2005, 11(1-2):19-29. DOI: 10.1089/ten.2005.11.19. [44] Lim JY, Shaughnessy MC, Zhou Z, et al.Surface energy effects on osteoblast spatial growth and mineralization[J]. Biomaterials, 2008, 29(12):1776-1784. DOI: 10.1016/j.biomaterials.2007.12.026. [45] Donos N, Hamlet S, Lang NP, et al.Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface[J]. Clin Oral Implants Res, 2011, 22(4):365-372. DOI: 10.1111/j.1600-0501.2010.02113.x. [46] Hotchkiss KM, Sowers KT, Olivares-Navarrete R.Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants[J]. Dent Mater, 2019, 35(1):176-184. DOI: 10.1016/j.dental.2018.11.011. [47] Alayan J, Vaquette C, Saifzadeh S, et al.Comparison of early osseointegration of SLA(®) and SLActive(®) implants in maxillary sinus augmentation: a pilot study[J]. Clin Oral Implants Res, 2017, 28(11):1325-1333. DOI: 10.1111/clr.12988. [48] Ko KA, Kim S, Choi SH, et al.Randomized controlled clinical trial on calcium phosphate coated and conventional SLA surface implants: 1-year study on survival rate and marginal bone level[J]. Clin Implant Dent Relat Res, 2019, 21(5):995-1001. DOI: 10.1111/cid.12823. [49] Fernandes C, Bezerra F, Ferreira MR, et al.Nano hydroxyapatite-blasted titanium surface creates a biointerface able to govern Src-dependent osteoblast metabolism as prerequisite to ECM remodeling[J]. Colloids Surf B Biointerfaces, 2018, 163:321-328. DOI: 10.1016/j.colsurfb.2017.12.049. [50] de Lima Cavalcanti JH, Matos PC, Depes de Gouvêa CV, et al. In vitro assessment of the functional dynamics of titanium with surface coating of hydroxyapatite nanoparticles[J]. Materials (Basel), 2019:840, 12(5). DOI: 10.3390/ma12050840. [51] da Silva RA, da Silva Feltran G, Ferreira MR, et al. The impact of bioactive surfaces in the early stages of osseointegration: an in vitro comparative study evaluating the HAnano® and SLActive® Super Hydrophilic surfaces[J]. Biomed Res Int, 2020, 2020:3026893. DOI: 10.1155/2020/3026893. [52] Wang HL, Boyapati L."PASS" principles for predictable bone regeneration[J]. Implant Dent, 2006, 15(1):8-17. DOI: 10.1097/01.id.0000204762.39826.0f. [53] Pesce P, Menini M, Canullo L, et al.Radiographic and histomorphometric evaluation of biomaterials used for lateral sinus augmentation: a systematic review on the effect of residual bone height and vertical graft size on new bone formation and graft shrinkage[J]. J Clin Med, 2021, 10(21):4996. DOI: 10.3390/jcm10214996. [54] Tanaka K, Botticelli D, Canullo L, et al.New bone ingrowth into β-TCP/HA graft activated with argon plasma: a histomorphometric study on sinus lifting in rabbits[J]. Int J Implant Dent, 2020, 6(1):36. DOI: 10.1186/s40729-020-00236-4. [55] Pereira RS, Gorla LF, Boos F, et al.Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: histomorphometric study and immunohistochemical assessment of RUNX2 and VEGF[J]. Int J Oral Maxillofac Surg, 2017, 46(4):503-510. DOI: 10.1016/j.ijom.2017.01.002. [56] Yang HJ, Hwang SJ.Void space and long-term volumetric changes of maxillary sinus floor augmentation with comparison between hydroxyapatite soaked with bone morphogenetic protein 2 and anorganic bovine xenograft alone[J]. J Craniomaxillofac Surg, 2019, 47(10):1626-1632. DOI: 10.1016/j.jcms.2019.07.016. [57] Susin C, Lee J, Fiorini T, et al.Sinus augmentation using rhBMP-2/ACS in a mini-pig model: influence of an adjunctive ceramic bone biomaterial[J]. J Clin Periodontol, 2018, 45(8):1005-1013. DOI: 10.1111/jcpe.12921. [58] Pitzurra L, Jansen I, de Vries TJ, et al. Effects of L-PRF and A-PRF+ on periodontal fibroblasts in in vitro wound healing experiments[J]. J Periodontal Res, 2020, 55(2):287-295. DOI: 10.1111/jre.12714. [59] Kargarpour Z, Nasirzade J, Panahipour L, et al.Liquid PRF reduces the inflammatory response and osteoclastogenesis in murine macrophages[J]. Front Immunol, 2021, 12:636427. DOI: 10.3389/fimmu.2021.636427. [60] Miron RJ, Moraschini V, Fujioka-Kobayashi M, et al.Use of platelet-rich fibrin for the treatment of periodontal intrabony defects: a systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25(5):2461-2478. DOI: 10.1007/s00784-021-03825-8. [61] 陈思宇, 周延民. 富血小板纤维蛋白促进上颌窦底提升术后骨再生研究进展[J]. 中国实用口腔科杂志, 2022, 15(4):491-497. DOI: 10.19538/j.kq.2022.04.023. [62] Dohan Ehrenfest DM, Del Corso M, Diss A, et al.Three-dimensional architecture and cell composition of a Choukroun's platelet-rich fibrin clot and membrane[J]. J Periodontol, 2010, 81(4):546-555. DOI: 10.1902/jop.2009.090531. [63] Choukroun J, Diss A, Simonpieri A, et al.Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101(3):e56-e60. DOI: 10.1016/j.tripleo.2005.07.011. [64] Dohan DM, Choukroun J, Diss A, et al.Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates?[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101(3):e51-e55. DOI: 10.1016/j.tripleo.2005.07.010. [65] Dohan DM, Choukroun J, Diss A, et al.Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101(3):e45-e50. DOI: 10.1016/j.tripleo.2005.07.009. [66] Castro AB, Van Dessel J, Temmerman A, et al.Effect of different platelet-rich fibrin matrices for ridge preservation in multiple tooth extractions: a split-mouth randomized controlled clinical trial[J]. J Clin Periodontol, 2021, 48(7):984-995. DOI: 10.1111/jcpe.13463. [67] Pichotano EC, de Molon RS, de Souza RV, et al. Evaluation of L-PRF combined with deproteinized bovine bone mineral for early implant placement after maxillary sinus augmentation: a randomized clinical trial[J]. Clin Implant Dent Relat Res, 2019, 21(2):253-262. DOI: 10.1111/cid.12713. [68] Ortega-Mejia H, Estrugo-Devesa A, Saka-Herrán C, et al.Platelet-rich plasma in maxillary sinus augmentation: systematic review[J]. Materials (Basel), 2020, 13(3):622. DOI: 10.3390/ma13030622. [69] Tanaka H, Toyoshima T, Atsuta I, et al.Additional effects of platelet-rich fibrin on bone regeneration in sinus augmentation with deproteinized bovine bone mineral: preliminary results[J]. Implant Dent, 2015, 24(6):669-674. DOI: 10.1097/ID.0000000000000306. [70] Nugraha AP, Narmada IB, Ernawati DS, et al.Bone alkaline phosphatase and osteocalcin expression of rat's gingival mesenchymal stem cells cultured in platelet-rich fibrin for bone remodeling (in vitro study)[J]. Eur J Dent, 2018, 12(4):566-573. DOI: 10.4103/ejd.ejd_261_18. [71] Wang J, Sun Y, Liu Y, et al.Effects of platelet-rich fibrin on osteogenic differentiation of Schneiderian membrane derived mesenchymal stem cells and bone formation in maxillary sinus[J]. Cell Commun Signal, 2022, 20(1):88. DOI: 10.1186/s12964-022-00844-0. [72] Wang J, Sun X, Lv H, et al.Endoscope-assisted maxillary sinus floor elevation with platelet-rich fibrin grafting and simultaneous implant placement: a prospective clinical trial[J]. Int J Oral Maxillofac Implants, 2021, 36(1):137-145. DOI: 10.11607/jomi.8723. [73] Lv H, Sun X, Wang J, et al.Flapless osteotome-mediated sinus floor elevation using platelet-rich fibrin versus lateral approach using deproteinised bovine bone mineral for residual bone height of 2-6 mm: a randomised trial[J]. Clin Oral Implants Res, 2022, 33(7):700-712. DOI: 10.1111/clr.13934. |
[1] | Zhou Yanmin, Qin Qiuyue. Clinical implications of 3-dimensional osteogenesis model for maxillary sinus to promote osteogenesis in maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 69-76. |
[2] | Yu Jiuyue, Jia Wenhao, Fang Li, Wang Jian, Li Jiangming, Liu Han, Guo Qili. Clinical analysis of extraction site preservation using Bio-Oss Collagen after extraction of maxillary molars [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 90-96. |
[3] | Li Xiaoyu, He Jie, Wang Xueke, Duan Jingyi, Ge Chang, Meng Weiyan. Application of Bio-Oss Collagen with tent pole procedure in vertical bone augmentation of edentulous maxillary posterior area: a case report [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 97-101. |
[4] | Gong Jiaming, Zhao Ruimin, Zhang Qihang, Yu Zhanhai, Su Linhan. The autologous platelet concentrates for maxillary sinus floor elevation: an overview of systematic reviews [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 102-108. |
[5] | Luo Guisheng, Liu Yumeng, Wang Penglai, Yuan Changyong. Research progress on trace elements modification of PEEK implant [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 109-113. |
[6] | Cheng Yi, Huang Haitao. Research status on 3D printed individualized scaffold materials in alveolar bone augmentation [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 114-118. |
[7] | Chinese Society of Oral Implantology. Expert consensus on bone grafting materials for maxillary sinus floor elevation: bone substitutes [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 3-8. |
[8] | Cheng Wen, Ma Xiaoting, Shen Yajie, Lv Shouyin, Shao Bo. Research progress on nano-silver antibacterial materials in the application in oral implantology [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 40-46. |
[9] | Deng Lei, Huang Haitao. Progress in the study of osteogenesis after maxillary sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 53-57. |
[10] | Ji Ping. Research progress of 3D printing individualized titanium mesh for complex bone augmentation [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 334-339. |
[11] | Chinese Society of Oral Implantology. Expert consensus on bone grafting materials for maxillary sinus floor elevation: autogenous bone [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 269-273. |
[12] | Chen Jiang. Application of robots in the field of dental implantology [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 274-279. |
[13] | Li Jinmeng, Li Xiaoban, Zhang Jian. Exploration and consideration on clinical solutions for complex alveolar bone defects [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 285-291. |
[14] | Zhang Qihang, Gong Jiaming, Gou Ping, Yu Jiaying, Bo Lei, Yu Zhanhai. A meta-analysis of interimplant distance on peri-implant bone resorption [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 304-311. |
[15] | Teng Weiwei, Su Tianyue, Wang Qi, Shu Qianyi, Zhou Libo, Hou Yuze. Current status of the use of polyurethane artificial bone in vitro studies of dental implants [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 312-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||