[1] Brügger OE, Bornstein MM, Kuchler U, et al.Implant therapy in a surgical specialty clinic: an analysis of patients, indications, surgical procedures, risk factors, and early failures[J]. Int J Oral Maxillofac Implants, 2015, 30(1):151-160. DOI: 10.11607/jomi.3769. [2] 张富贵, 宿玉成, 邱立新, 等. 牙槽骨缺损骨增量手术方案的专家共识[J]. 口腔疾病防治, 2022, 30(4):229-236. DOI: 10.12016/j.issn.2096-1456.2022.04.001. [3] Wang HL, Boyapati L."PASS" principles for predictable bone regeneration[J]. Implant Dent, 2006, 15(1):8-17. DOI: 10.1097/01.id.0000204762.39826.0f. [4] Williams DF.On the nature of biomaterials[J]. Biomaterials, 2009, 30(30):5897-5909. DOI: 10.1016/j.biomaterials.2009.07.027. [5] 何逸恒, 程鸣威, 朱培君, 等. 电活性生物膜促进大鼠的体内成骨[J]. 中国组织工程研究, 2022, 26(28):4446-4451. [6] 许言, 李平, 赖春花, 等. 血管化骨再生中压电生物材料的应用[J]. 中国组织工程研究, 2023, 27(7):1126-1132. [7] 朱培君, 赖春花, 程鸣威, 等. 电活性生物膜通过调控巨噬细胞极化促进骨再生修复的体外研究[J]. 实用医学杂志, 2021, 37(10):1257-1262. DOI: 10.3969/j.issn.1006-5725.2021.10.005. [8] Soldatos NK, Stylianou P, Koidou VP, et al.Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration[J]. Quintessence Int, 2017, 48(2):131-147. DOI: 10.3290/j.qi.a37133. [9] Zhang W, Li P, Shen G, et al.Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application[J]. Bioact Mater, 2021, 6(4):975-989. DOI: 10.1016/j.bioactmat.2020.09.019. [10] Li P, Zhang W, Dai J, et al.Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103:109826. DOI: 10.1016/j.msec.2019.109826. [11] Li P, Schille C, Schweizer E, et al.Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material[J]. Int J Mol Sci, 2018, 19(3):755. DOI: 10.3390/ijms19030755. [12] Čapek J, Kubásek J, Pinc J, et al.Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material[J]. Mater Sci Eng C Mater Biol Appl, 2021, 122:111924. DOI: 10.1016/j.msec.2021.111924. [13] Li P, Qian J, Zhang W, et al.Improved biodegradability of zinc and its alloys by sandblasting treatment[J]. Surf Coat Technol, 2020, 405(18): 126678. DOI: 10.1016/j.surfcoat.2020.126678. [14] Li P, Zhang W, Spintzyk S, et al.Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials[J]. Mater Sci Eng C Mater Biol Appl, 2021, 130:112430. DOI: 10.1016/j.msec.2021.112430. [15] Li P, Schille C, Schweizer E, et al.Selection of extraction medium influences cytotoxicity of zinc and its alloys[J]. Acta Biomater, 2019, 98:235-245. DOI: 10.1016/j.actbio.2019.03.013. [16] Zhu P, Chen J, Li P, et al.Limitation of water-soluble tetrazolium salt for the cytocompatibility evaluation of zinc-based metals[J]. Materials (Basel), 2021, 14(21):6247. DOI: 10.3390/ma14216247. [17] Li P, Dai J, Schweizer E, et al.Response of human periosteal cells to degradation products of zinc and its alloy[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108:110208. DOI: 10.1016/j.msec.2019.110208. [18] Xu Y, Xu Y, Zhang W, et al.Biodegradable Zn-Cu-Fe alloy as a promising material for craniomaxillofacial implants: an in vitro investigation into degradation behavior, cytotoxicity, and hemocompatibility[J]. Front Chem, 2022, 10:860040. DOI: 10.3389/fchem.2022.860040. [19] Zhang W, Li P, Neumann B, et al.Chandler-Loop surveyed blood compatibility and dynamic blood triggered degradation behavior of Zn-4Cu alloy and Zn[J]. Mater Sci Eng C Mater Biol Appl, 2021, 119:111594. DOI: 10.1016/j.msec.2020.111594. [20] Yin YX, Zhou C, Shi YP, et al.Hemocompatibility of biodegradable Zn-0.8 wt% (Cu, Mn, Li) alloys[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104:109896. DOI: 10.1016/j.msec.2019.109896. [21] Li P, Schille C, Schweizer E, et al.Evaluation of a Zn-2Ag-1.8Au-0.2V alloy for absorbable biocompatible materials[J]. Materials (Basel), 2019, 13(1):56. DOI: 10.3390/ma13010056. [22] Mostaed E, Sikora-Jasinska M, Drelich JW, et al.Zinc-based alloys for degradable vascular stent applications[J]. Acta Biomater, 2018, 71:1-23. DOI: 10.1016/j.actbio.2018.03.005. [23] Chiapasco M, Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review[J]. Clin Oral Implants Res, 2009, 20 Suppl 4:113-123. DOI: 10.1111/j.1600-0501.2009.01781.x. [24] Lin J, Tong X, Shi Z, et al.A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications[J]. Acta Biomater, 2020, 106:410-427. DOI: 10.1016/j.actbio.2020.02.017. [25] Tang Z, Niu J, Huang H, et al.Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications[J]. J Mech Behav Biomed Mater, 2017, 72:182-191. DOI: 10.1016/j.jmbbm.2017.05.013. [26] Seil JT, Webster TJ.Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces[J]. Acta Biomater, 2011, 7(6):2579-2584. DOI: 10.1016/j.actbio.2011.03.018. [27] Spaey YJ, Bettens RM, Mommaerts MY, et al.A prospective study on infectious complications in orthognathic surgery[J]. J Craniomaxillofac Surg, 2005, 33(1):24-29. DOI: 10.1016/j.jcms.2004.06.008. [28] Pye AD, Lockhart DE, Dawson MP, et al.A review of dental implants and infection[J]. J Hosp Infect, 2009, 72(2):104-110. DOI: 10.1016/j.jhin.2009.02.010. [29] Zhang HY, Jiang HB, Ryu JH, et al.Comparing properties of variable pore-sized 3D-printed PLA membrane with conventional PLA membrane for guided bone/tissue regeneration[J]. Materials (Basel), 2019, 12(10):1718. DOI: 10.3390/ma12101718. [30] Zellin G, Linde A.Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats[J]. Biomaterials, 1996, 17(7):695-702. DOI: 10.1016/0142-9612(96)86739-1. [31] Gutta R, Baker RA, Bartolucci AA, et al.Barrier membranes used for ridge augmentation: is there an optimal pore size?[J]. J Oral Maxillofac Surg, 2009, 67(6):1218-1225. DOI: 10.1016/j.joms.2008.11.022. [32] Caballé-Serrano J, Munar-Frau A, Ortiz-Puigpelat O, et al.On the search of the ideal barrier membrane for guided bone regeneration[J]. J Clin Exp Dent, 2018, 10(5):e477-e483. DOI: 10.4317/jced.54767. [33] Guo H, Xia D, Zheng Y, et al.A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: in vitro and in vivo studies[J]. Acta Biomater, 2020, 106:396-409. DOI: 10.1016/j.actbio.2020.02.024. [34] Zhu D, Cockerill I, Su Y, et al.Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials[J]. ACS Appl Mater Interfaces, 2019, 11(7):6809-6819. DOI: 10.1021/acsami.8b20634. [35] Yuan W, Xia D, Wu S, et al.A review on current research status of the surface modification of Zn-based biodegradable metals[J]. Bioact Mater, 2022, 7:192-216. DOI: 10.1016/j.bioactmat.2021.05.018. [36] Yan ZY, Zhu JH, Liu GQ, et al.Feasibility and efficacy of a degradable magnesium-alloy GBR membrane for bone augmentation in a distal bone-defect model in beagle dogs[J]. Bioinorg Chem Appl, 2022, 2022:4941635. DOI: 10.1155/2022/4941635. [37] Rakhmatia YD, Ayukawa Y, Furuhashi A, et al.Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications[J]. J Prosthodont Res, 2013, 57(1):3-14. DOI: 10.1016/j.jpor.2012.12.001. |