Chinese Journal of Oral Implantology ›› 2022, Vol. 27 ›› Issue (5): 312-316.DOI: 10.12337/zgkqzzxzz.2022.09.009
• Reviews • Previous Articles Next Articles
Teng Weiwei1, Su Tianyue1, Wang Qi1, Shu Qianyi2, Zhou Libo1, Hou Yuze1
Received:
2022-04-09
Online:
2022-10-30
Published:
2022-11-01
Contact:
Zhou Libo, Email: zhoulibo0219@gmail.com, Tel: 0086-454-8625462
Supported by:
Teng Weiwei, Su Tianyue, Wang Qi, Shu Qianyi, Zhou Libo, Hou Yuze. Current status of the use of polyurethane artificial bone in vitro studies of dental implants[J]. Chinese Journal of Oral Implantology, 2022, 27(5): 312-316.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2022.09.009
[1] Wang R, Eppell SJ, Nguyen C, et al.Relative contribution of trabecular and cortical bone to primary implant stability: an in vitro model study[J]. J Oral Implantol, 2016,42(2):145-152. DOI: 10.1563/aaid-joi-D-14-00322. [2] Bredbenner TL, Haug RH.Substitutes for human cadaveric bone in maxillofacial rigid fixation research[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000,90(5):574-580. DOI: 10.1067/moe.2000.111025. [3] Kessler A, Le V, Folwaczny M.Influence of the tooth position, guided sleeve height, supporting length, manufacturing methods, and resin E-modulus on the in vitro accuracy of surgical implant guides in a free-end situation[J]. Clin Oral Implants Res. 2021,32(9):1097-1104. DOI: 10.1111/clr.13804. [4] Choi HH, Chung CH, Kim SG, et al.Reliability of 2 implant stability measuring methods in assessment of various periimplant bone loss: an in vitro study with the Periotest and Osstell Mentor. Implant Dent[J]. 2014, 23(1):51-56. DOI: 10.1097/ID.0000000000000000. [5] Wu AY, Lung H, Huang HL, et al.Biomechanical investigations of the expanded platform-switching concept in immediately loaded small diameter implants[J]. J Prosthet Dent, 2016,115(1):20-25. DOI: 10.1016/j.prosdent.2015.08.005. [6] Alameldeen HE, Elsyad MA, Shawky AF, et al.The influence of implant inclination on retention and peri-implant stresses of stud-retained implant overdentures during axial and nonaxial dislodgments: an in vitro study[J]. Int J Oral Maxillofac Implants, 2020,35(3):543-550. DOI: 10.11607/jomi.7954. [7] Libor M, Milena Š, Jiří D,et al.Structure evolution during order-disorder transitions in aliphatic polycarbonate based polyurethanes. Self-healing polymer[J]. Chem Eng J,2019, 357:611-624.DOI:10. 1016/j.cej.2018.09.118. [8] Raz P, Meir H, Levartovsky S, et al.Reliability and correlation of different devices for the evaluation of primary implant stability: an in vitro study[J]. Materials (Basel), 2021,14(19):5537. DOI: 10.3390/ma14195537. [9] Chávarri-Prado D, Brizuela-Velasco A, Diéguez-Pereira M, et al.Influence of cortical bone and implant design in the primary stability of dental implants measured by two different devices of resonance frequency analysis: an in vitro study[J]. J Clin Exp Dent, 2020,12(3):e242-e248. DOI: 10.4317/jced.56014. [10] Gehrke SA, Guirado J, Bettach R, et al.Evaluation of the insertion torque, implant stability quotient and drilled hole quality for different drill design: an in vitro Investigation[J]. Clin Oral Implants Res, 2018,29(6):656-662. DOI: 10.1111/clr.12808. [11] Goellner M, Schmitt J, Karl M, et al.The effect of axial and oblique loading on the micromovement of dental implants[J]. Int J Oral Maxillofac Implants, 2011,26(2):257-264. [12] Huang HL, Tsai MT, Su KC, et al.Relation between initial implant stability quotient and bone-implant contact percentage: an in vitro model study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013,116(5):e356-361. DOI: 10.1016/j.oooo.2012.01.037. [13] Comuzzi L, Iezzi G, Piattelli A, et al.An in vitro evaluation, on polyurethane foam sheets, of the insertion torque (it) values, pull-out torque values, and resonance frequency analysis (RFA) of nanoshort dental implants[J]. Polymers (Basel), 2019,11(6):1020. DOI: 10.3390/polym11061020. [14] Devlin H, Horner K, Ledgerton D.A comparison of maxillary and mandibular bone mineral densities[J]. J Prosthet Dent, 1998,79(3):323-327. DOI: 10.1016/s0022-3913(98)70245-8. [15] Sugiura T, Yamamoto K, Horita S, et al.Evaluation of primary stability of cylindrical and tapered implants in different bone types by measuring implant displacement: an in vitro study[J]. Contemp Clin Dent, 2019,10(3):471-476. DOI: 10.4103/ccd.ccd_788_18. [16] Ko YC, Huang HL, Shen YW, et al.Variations in crestal cortical bone thickness at dental implant sites in different regions of the jawbone[J]. Clin Implant Dent Relat Res, 2017,19(3):440-446. DOI: 10.1111/cid.12468. [17] Sierra-Rebolledo A, Allais-Leon M, Maurette-OʼBrien P, et al. Primary apical stability of tapered implants through reduction of final drilling dimensions in different bone density models: a biomechanical study[J]. Implant Dent, 2016,25(6):775-782. DOI: 10.1097/ID.0000000000000479. [18] Misch CE, Qu Z, Bidez MW.Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement[J]. J Oral Maxillofac Surg, 1999,57(6):700-708. DOI: 10.1016/s0278-2391(99)90437-8. [19] Huang HL, Chang YY, Lin DJ, et al.Initial stability and bone strain evaluation of the immediately loaded dental implant: an in vitro model study[J]. Clin Oral Implants Res, 2011,22(7):691-698. DOI: 10.1111/j.1600-0501.2010.01983.x. [20] Hsu JT, Huang HL, Tsai MT, et al.Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses[J]. Int J Oral Maxillofac Surg, 2013,42(2):276-280. DOI: 10.1016/j.ijom.2012.07.002. [21] Pan CY, Liu PH, Tseng YC, et al.Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants[J]. J Dent Sci, 2019,14(4):383-388. DOI: 10.1016/j.jds.2019.06.002. [22] Mediavilla Guzmán A, Riad Deglow E, Zubizarreta-Macho Á, et al.Accuracy of computer-aided dynamic navigation compared to computer-aided static navigation for dental implant placement: an in vitro study[J]. J Clin Med, 2019,8(12):2123. DOI: 10.3390/jcm8122123. [23] Yimarj P, Subbalekha K, Dhanesuan K, et al.Comparison of the accuracy of implant position for two-implants supported fixed dental prosthesis using static and dynamic computer-assisted implant surgery: a randomized controlled clinical trial[J]. Clin Implant Dent Relat Res, 2020,22(6):672-678. DOI: 10.1111/cid.12949. [24] Lee JS, Kim DH, Park YC, et al.The efficient use of midpalatal miniscrew implants[J]. Angle Orthod, 2004,74(5):711-714. DOI: 10.1043/0003-3219(2004)074<0711:TEUOMM>2.0.CO;2. [25] Bae MJ, Kim JY, Park JT, et al.Accuracy of miniscrew surgical guides assessed from cone-beam computed tomography and digital models[J]. Am J Orthod Dentofacial Orthop, 2013,143(6):893-901. DOI: 10.1016/j.ajodo.2013.02.018. [26] Cha JY, Hwang CJ, Kwon SH, et al.Strain of bone-implant interface and insertion torque regarding different miniscrew thread designs using an artificial bone model[J]. Eur J Orthod, 2015,37(3):268-274. DOI: 10.1093/ejo/cju037. [27] Pan CY, Liu PH, Tseng YC, et al.Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants[J]. J Dent Sci, 2019,14(4):383-388. DOI: 10.1016/j.jds.2019.06.002. [28] Chang JZ, Chen YJ, Tung YY, et al.Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants[J]. Am J Orthod Dentofacial Orthop, 2012,141(3):279-288. DOI: 10.1016/j.ajodo.2011.09.008. [29] Armstrong JE, Lapointe HJ, Hogg NJ, et al.Preliminary investigation of the biomechanics of internal fixation of sagittal split osteotomies with miniplates using a newly designed in vitro testing model[J]. J Oral Maxillofac Surg, 2001,59(2):191-195. DOI: 10.1053/joms.2001.20492. [30] Lieger O, Schaller B, Bürki A, et al.Biomechanical evaluation of different angle-stable locking plate systems for mandibular surgery[J]. J Craniomaxillofac Surg, 2015,43(8):1589-1594. DOI: 10.1016/j.jcms.2015.06.047. [31] Pereira-Filho VA, da Silva BN, Nunes Reis JM, et al. Effect of the number of screws on the stability of locking mandibular reconstruction plates[J]. Int J Oral Maxillofac Surg, 2013,42(6):732-735. DOI: 10.1016/j.ijom.2013.02.010. [32] Kolsuz N, Atali O, Varol A.Assessment of biomechanical properties of specially-designed miniplate patterns in a mandibular subcondylar fracture model with finite element analysis and a servohydraulic testing unit[J]. Br J Oral Maxillofac Surg, 2020,58(7):848-853. DOI: 10.1016/j.bjoms.2020.04.053. [33] Polat ME, Dayi E, 赵泽亮. 体外评价不同固定方法对下颌骨骨折稳定性的影响[J].中国口腔颌面外科杂志,2019,(3):279. |
[1] | Zhou Yanmin, Qin Qiuyue. Clinical implications of 3-dimensional osteogenesis model for maxillary sinus to promote osteogenesis in maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 69-76. |
[2] | Yu Jiuyue, Jia Wenhao, Fang Li, Wang Jian, Li Jiangming, Liu Han, Guo Qili. Clinical analysis of extraction site preservation using Bio-Oss Collagen after extraction of maxillary molars [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 90-96. |
[3] | Li Xiaoyu, He Jie, Wang Xueke, Duan Jingyi, Ge Chang, Meng Weiyan. Application of Bio-Oss Collagen with tent pole procedure in vertical bone augmentation of edentulous maxillary posterior area: a case report [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 97-101. |
[4] | Luo Guisheng, Liu Yumeng, Wang Penglai, Yuan Changyong. Research progress on trace elements modification of PEEK implant [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 109-113. |
[5] | Zhou Yanmin, Zhu Yuemeng. Construction of the 3-dimensional osteogenesis model for maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 9-18. |
[6] | Cheng Wen, Ma Xiaoting, Shen Yajie, Lv Shouyin, Shao Bo. Research progress on nano-silver antibacterial materials in the application in oral implantology [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 40-46. |
[7] | Chen Jiang. Application of robots in the field of dental implantology [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 274-279. |
[8] | Zhang Qihang, Gong Jiaming, Gou Ping, Yu Jiaying, Bo Lei, Yu Zhanhai. A meta-analysis of interimplant distance on peri-implant bone resorption [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 304-311. |
[9] | Yang Dezhao, Xu Yingjie, Tang Zhengting, Ma Yuxiao, Li Guangcheng, Meng Fanwen. Application of lag screw technique in alveolar bone block grafting [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 217-223. |
[10] | Ma Yuxiao, Zhou Libo, Meng Fanwen, Yang Dezhao, Wang Zhaoyun, Duan Feng. Comparison of implantation accuracy of four implantation methods in the posterior region of mandible: an in vitro study [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 229-237. |
[11] | Zhang Ruiyuan, Zhong Weijian, Ma Guowu. Research progress of socket-shield technique in immediate implantation [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 238-242. |
[12] | Su Tianyue, Teng Weiwei, Wang Qi, Shu Qianyi, Zhou Libo. Progress in evaluation methods of dental implant placement accuracy [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 248-253. |
[13] | Jiang Ruifang, Zhang Yanfang, Li Xue, Liu Liu, Xue Peng. The application of dynamic navigation system in dental implant training [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 254-258. |
[14] | Ni Ting, Zhang Liang, Han Zekui, Wang Xinyu, Duan Feng. Digital measurement methods on accuracy evaluation of six implants placed paralleled with the static surgical guide [J]. Chinese Journal of Oral Implantology, 2022, 27(3): 140-146. |
[15] | Gong Jiaming, Zhao Ruiming, Wang Jia, Dai Zhiming, Yu Zhanhai, Yin Lihua. Systematic literature review of peri-implant cyst [J]. Chinese Journal of Oral Implantology, 2022, 27(3): 181-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||