[1] Yu B, Wang CY.Osteoporosis and periodontal diseases - an update on their association and mechanistic links[J]. Periodontol 2000, 2022,89(1):99-113. DOI: 10.1111/prd.12422. [2] Graves DT, Ding Z, Yang Y.The impact of diabetes on periodontal diseases[J]. Periodontol 2000, 2020,82(1):214-224. DOI: 10.1111/prd.12318. [3] Ebersole JL, Graves CL, Gonzalez OA,et al.Aging, inflammation, immunity and periodontal disease[J].Periodontology 2000, 2016, 72(1):54-75.DOI:10.1111/prd.12135. [4] 中华口腔医学会口腔种植专业委员会.上颌窦底提升中骨增量材料的专家共识:自体骨[J]. 中国口腔种植学杂志, 2022, 27(5):269-273.DOI: 10.12337/zgkqzzxzz. 2022.10.002. [5] Tang G, Liu Z, Liu Y, et al.Recent trends in the development of bone regenerative biomaterials[J]. Front Cell Dev Biol, 2021,9:665813. DOI: 10.3389/fcell.2021.665813. [6] Kolk A, Handschel J, Drescher W, et al.Current trends and future perspectives of bone substitute materials -from space holders to innovative biomaterials[J]. J Craniomaxillofac Surg, 2012,40(8):706-718. DOI: 10.1016/j.jcms.2012.01.002. [7] Koons GL, Diba M, Mikos AG .Materials design for bone-tissue engineering[J].Nature Reviews Materials, 2020, 5(Suppl 2):584-603.DOI:10.1038/s41578-020-0204-2. [8] Lin W, Li Q, Zhang D, et al.Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution[J]. Bone Res, 2021,9(1):17. DOI: 10.1038/s41413-021-00141-5. [9] Aghaloo TL, Chaichanasakul T, Bezouglaia O, et al.Osteogenic potential of mandibular vs. long-bone marrow stromal cells[J]. J Dent Res, 2010,89(11):1293-1298. DOI: 10.1177/0022034510378427. [10] Omi M, Mishina Y.Roles of osteoclasts in alveolar bone remodeling[J]. Genesis, 2022,60(8-9):e23490. DOI: 10.1002/dvg.23490. [11] Zhou S, Yang Y, Ha N, et al.The specific morphological features of alveolar bone[J]. J Craniofac Surg, 2018,29(5):1216-1219. DOI: 10.1097/SCS.0000000000004395. [12] Akintoye SO.The distinctive jaw and alveolar bone regeneration[J]. Oral Dis, 2018,24(1-2):49-51. DOI: 10.1111/odi.12761. [13] Donos N, Akcali A, Padhye N, et al.Bone regeneration in implant dentistry: which are the factors affecting the clinical outcome?[J]. Periodontol 2000, 2023,93(1):26-55. DOI: 10.1111/prd.12518. [14] Chen S, Guo Y, Liu R, et al.Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration[J]. Colloids Surf B Biointerfaces, 2018,164:58-69. DOI: 10.1016/j.colsurfb.2018.01.022. [15] Wang K, Zhou C, Hong Y, et al.A review of protein adsorption on bioceramics[J]. Interface Focus, 2012,2(3):259-277. DOI: 10.1098/rsfs.2012.0012. [16] Toledano M, Carrasco-Carmona Á, Medina-Castillo AL, et al.Protein adsorption and bioactivity of functionalized electrospun membranes for bone regeneration[J]. J Dent, 2020,102:103473. DOI: 10.1016/j.jdent.2020.103473. [17] Lin Z, Wu J, Qiao W, et al.Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration[J]. Biomaterials, 2018,174:1-16. DOI: 10.1016/j.biomaterials.2018.05.011. [18] Wang X, Xue J, Ma B, et al.Black bioceramics: combining regeneration with therapy[J]. Adv Mater, 2020, 32(48):e2005140. DOI: 10.1002/adma.202005140. [19] Kim J,Pan H. Effects of magnesium alloy corrosion on biological response-perspectives of metal-cell interaction[J]. Progress in Materials Science,2023,133(4): 101039.1-101039.63. DOI: 10.1016/j.pmatsci.2022.101039. [20] Li W, Qiao W, Liu X, et al.Biomimicking bone-implant interface facilitates the bioadaption of a new degradable magnesium alloy to the bone tissue microenvironment[J]. Adv Sci (Weinh), 2021,8(23):e2102035. DOI: 10.1002/advs.202102035. [21] Wei S, Ma JX, Xu L, et al.Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020,7(1):54. DOI: 10.1186/s40779-020-00280-6. [22] 邓廉夫, 燕宇飞. 骨修复材料的研究现状与进展[J].中国修复重建外科杂志,2018,32(7):815-820. DOI: 10.7507/1002-1892.201806028. [23] Liu Y, Peng L, Li L, et al.3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model[J]. Biomaterials, 2021,279:121216. DOI: 10.1016/j.biomaterials.2021.121216. [24] Shen J, Chen B, Zhai X, et al.Stepwise 3D-spatio-temporal magnesium cationic niche: nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification[J]. Bioact Mater, 2021,6(2):503-519. DOI: 10.1016/j.bioactmat.2020.08.025. [25] Shen J, Wang W, Zhai X, et al.3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration[J]. Applied Materials Today, 2019,16:493-507.DOI:10.1016/j.apmt.2019.07.012. [26] Zhao W, Yue C, Liu L, et al.Research progress of shape memory polymer and 4D printing in biomedical application[J]. Adv Healthc Mater, 2023,12(16):e2201975. DOI: 10.1002/adhm.202201975. [27] Li Z, Huang B, Mai S, et al.Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells[J]. Sci Technol Adv Mater, 2015,16(3):035006. DOI: 10.1088/1468-6996/16/3/035006. [28] Liu R, Qiao W, Huang B, et al.Fluorination enhances the osteogenic capacity of porcine hydroxyapatite[J]. Tissue Eng Part A, 2018,24(15-16):1207-1217. DOI: 10.1089/ten.TEA.2017.0381. [29] Qiao W, Liu R, Li Z, et al.Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration[J]. Biomater Sci, 2018,6(11):2951-2964. DOI: 10.1039/c8bm00910d. [30] Chen Z, Klein T, Murray RZ,et al.Osteoimmunomodulation for the development of advanced bone biomaterials[J].Materials Today, 2016, 19(6):304-321.DOI:10.1016/j.mattod.2015.11.004. [31] Wang Y, Zhang H, Hu Y,et al.Bone repair biomaterials: a perspective from immunomodulation[J]. Adv Funct Materials, 2022,32:2208639. [32] Qiao W, Xie H, Fang J, et al.Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration[J]. Biomaterials, 2021,276:121038. DOI: 10.1016/j.biomaterials.2021.121038. [33] Huang P, Xu J, Xie L, et al.Improving hard metal implant and soft tissue integration by modulating the "inflammatory-fibrous complex" response[J]. Bioact Mater, 2023,20:42-52. DOI: 10.1016/j.bioactmat.2022.05.013. [34] Yang B, Pang X, Li Z, et al.Immunomodulation in the treatment of periodontitis: progress and perspectives[J]. Front Immunol, 2021,12:781378. DOI: 10.3389/fimmu.2021.781378. [35] Marrella A, Lee TY, Lee DH, et al.Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration[J]. Mater Today (Kidlington), 2018,21(4):362-376. DOI: 10.1016/j.mattod.2017.10.005. [36] Zhang H, Zhang M, Zhai D, et al.Polyhedron-like biomaterials for innervated and vascularized bone regeneration[J]. Adv Mater, 2023,35(42):e2302716. DOI: 10.1002/adma.202302716. [37] Li Y, Fraser D, Mereness J, et al.Tissue engineered neurovascularization strategies for craniofacial tissue regeneration[J]. ACS Appl Bio Mater, 2022,5(1):20-39. DOI: 10.1021/acsabm.1c00979. [38] Xu Z, Kusumbe AP, Cai H, et al.Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2023,111(7):1434-1446. DOI: 10.1002/jbm.b.35243. [39] Meyers CA, Lee S, Sono T, et al.A neurotrophic mechanism directs sensory nerve transit in cranial bone[J]. Cell Rep, 2020,31(8):107696. DOI: 10.1016/j.celrep.2020.107696. [40] Zhang Z, Wang F, Huang X, et al.Engineered sensory nerve guides self-adaptive bone healing via NGF-TrkA signaling pathway[J]. Adv Sci (Weinh), 2023,10(10):e2206155. DOI: 10.1002/advs.202206155. [41] Newman H, Shih YV, Varghese S.Resolution of inflammation in bone regeneration: from understandings to therapeutic applications[J]. Biomaterials, 2021,277:121114. DOI: 10.1016/j.biomaterials.2021.121114. [42] Tian P, Zhao L, Kim J, et al.Dual stimulus responsive borosilicate glass (BSG) scaffolds promote diabetic alveolar bone defectsrepair by modulating macrophage phenotype[J]. Bioact Mater, 2023,26:231-248. DOI: 10.1016/j.bioactmat.2023.02.023. [43] Almubarak S, Nethercott H, Freeberg M, et al.Tissue engineering strategies for promoting vascularized bone regeneration[J]. Bone, 2016,83:197-209. DOI: 10.1016/j.bone.2015.11.011. [44] Qiao W, Pan D, Zheng Y, et al.Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models[J]. Nat Commun, 2022,13(1):535. DOI: 10.1038/s41467-022-28203-0. [45] Qiao W, Wong K, Shen J, et al.TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesiumion-induced bone regeneration[J]. Nat Commun, 2021,12(1):2885. DOI: 10.1038/s41467-021-23005-2. [46] Wu S, Xia B, Mai S, et al.Sodium fluoride under dose range of 2.4-24 μM, a promising osteoimmunomodulatory agent for vascularized bone formation[J]. ACS Biomater Sci Eng, 2019,5(2):817-830. DOI: 10.1021/acsbiomaterials.8b00570. [47] Abbasi N,Hamlet S,Love RM,et al.Porous scaffolds for bone regeneration[J]. J of Sci: Adv Mater and Devic,2020,5(1):1-9.DOI:10.1016/j.jsamd.2020.01.007. [48] Li X, Tsui KH, Tsoi J, et al.A nanostructured anti-biofilm surface widens the efficacy against spindle-shaped and chain-forming rod-like bacteria[J]. Nanoscale, 2020,12(36):18864-18874. DOI: 10.1039/d0nr03809a. [49] Yang M, Qiu S, Coy E, et al.NIR-responsive TiO(2) biometasurfaces: toward in situ photodynamic antibacterial therapy for biomedical implants[J]. Adv Mater, 2022,34(6):e2106314. DOI: 10.1002/adma.202106314. [50] Hannink G, Arts JJ.Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?[J].Injury,2011,42(Suppl 2):S22-S25. DOI: 10.1016/j.injury.2011.06.008. [51] Liu Q, Chen Z, Gu H, et al.Preparation and characterization of fluorinated porcine hydroxyapatite[J]. Dent Mater J, 2012,31(5):742-750. DOI: 10.4012/dmj.2012-052. [52] Qiao W, Liu Q, Li Z, et al.Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride[J]. Sci Technol Adv Mater, 2017,18(1):110-121. DOI: 10.1080/14686996.2016.1263140. [53] Storm C, Pastore JJ, MacKintosh FC, et al. Nonlinear elasticity in biological gels[J]. Nature, 2005,435(7039):191-194. DOI: 10.1038/nature03521. [54] Chaudhuri O, Cooper-White J, Janmey PA, et al.Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020,584(7822):535-546. DOI: 10.1038/s41586-020-2612-2. [55] Zimmermann EA, Schaible E, Bale H, et al.Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales[J]. Proc Natl Acad Sci USA, 2011,108(35):14416-14421. DOI: 10.1073/pnas.1107966108. [56] Saraswathibhatla A, Indana D, Chaudhuri O.Cell-extracellular matrix mechanotransduction in 3D[J]. Nat Rev Mol Cell Biol, 2023,24(7):495-516. DOI: 10.1038/s41580-023-00583-1. [57] Das RK, Gocheva V, Hammink R, et al.Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels[J]. Nat Mater, 2016,15(3):318-325. DOI: 10.1038/nmat4483. [58] Chaudhuri O, Gu L, Klumpers D, et al.Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J]. Nat Mater, 2016,15(3):326-334. DOI: 10.1038/nmat4489. [59] Elgali I, Omar O, Dahlin C, et al.Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017,125(5):315-337. DOI: 10.1111/eos.12364. [60] Zhang C, Chen Z,Liu, et al. 3D-printed pre-tapped-hole scaffolds facilitate one-step surgery of predictable alveolar bone augmentation and simultaneous dental implantation[J].Composites, Part B. Engineering, 2022, 229(15):109461.1-109461.12. [61] Ferraz MP.Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials[J]. Materials (Basel), 2023,16(11):4117. DOI: 10.3390/ma16114117. [62] Lee SW, Kim SG, Balázsi C, et al.Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012,113(3):348-355. DOI: 10.1016/j.tripleo.2011.03.033. [63] Garot C, Bettega G, Picart C.Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics[J]. Adv Funct Mater, 2020,31(5): 2006967.DOI: 10.1002/adfm.202006967. |