中国口腔种植学杂志 ›› 2024, Vol. 29 ›› Issue (2): 159-168.DOI: 10.12337/zgkqzzxzz.2024.04.011

• 论著-基础研究 • 上一篇    下一篇

不同颌骨密度下种植体设计对其骨界面应力分布影响的有限元分析

王琦1, 杨波1, 刘璐1, 李翠英1,2, 王心彧1   

  1. 1佳木斯大学附属口腔医院 黑龙江省口腔生物医学材料及临床应用重点实验室 154000;
    2北京大学口腔医院中心实验室 100081
  • 收稿日期:2024-01-04 出版日期:2024-04-30 发布日期:2024-05-08
  • 通讯作者: 李翠英,Email:licuiying_67@163.com,电话:010-66014546;王心彧,Email:wangxinyu@jmsu.edu.cn,电话:0454-8625654
  • 作者简介:王琦,硕士研究生在读,研究方向:数字化口腔种植;李翠英,博士、二级教授、主任医师、博士研究生导师,研究方向:骨改建、口腔种植相关等口腔病理学研究;王心彧,副主任医师、硕士研究生导师,研究方向:数字化口腔种植、种植辅助设备研发

Finite element analysis of the effect of implant design on stress distribution at the bone interface for different jaw densities

Wang Qi1, Yang Bo1, Liu Lu1, Li Cuiying1,2, Wang Xinyu1   

  1. 1Affiliated Stomatological Hospital,Jiamusi University,Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application,Jiamusi 154000,Heilongjiang,China;
    2Central Laboratory,Peking University School and Hospital of Stomatology,Beijing 100081,China
  • Received:2024-01-04 Online:2024-04-30 Published:2024-05-08
  • Contact: Li Cuiying, Email: licuiying_67@163.com, Tel:0086-10-66014546; Wang Xinyu, Email: wangxinyu@jmsu.edu.cn, Tel: 0086-454-8625654

摘要: 目的 探索不同骨质条件下,种植体外形设计对初始稳定性的影响,为种植体结构设计优化提供生物力学实验数据和理论参考依据。方法 利用Solid Works软件建立颌骨和种植体模型,其中种植体颌骨模型包括颈部、体部和底部模型,分为Ⅰ型、Ⅱ型和Ⅲ型骨,种植体模型分为颈部、体部、底部模型;通过Ansys有限元分析软件对模型在垂直向100 N载荷作用下产生的等效应力峰值进行分析,以筛选等效应力峰值在骨屈服强度值以下的结构;进一步对这些结构设计进行正交实验,对比分析在垂直向100 N载荷作用下,各种结构组合的种植体在不同骨质类型中的等效应力峰值,从而得到各设计对初始稳定性的影响并确定最优的结构设计。结果 在颈部Ⅰ、Ⅱ型颌骨模型中,种植体颈部深度设计对初始稳定性的影响最大;在颈部Ⅲ型颌骨模型中,种植体颈部螺距设计对初始稳定性的影响最大;在体部各种颌骨模型中,种植体体部深度设计对初始稳定性影响最大;而种植体底部切割刃设计并不能增加种植体的初始稳定性。结论 在临床种植体选择及开发设计中,应根据不同骨质类型选择不同的设计参数,在Ⅰ、Ⅱ型骨中更注重颈部以及体部螺纹深度的选择,在Ⅲ型骨中应更注重颈部螺距以及体部深度的选择。

关键词: 口腔种植, 有限元分析, 正交实验法, 螺纹设计, 初始稳定性, 生物力学

Abstract: Objective To evaluate the effects of various implant shape designs on initial stability under different bone conditions, and to provide biomechanical experimental data and theoretical reference for the optimization of implant structure design. Methods SolidWorks software was used to establish the jaw models and implant models. The jaw models included neck, body, and bottom models, and were divided into type I, type II, and type III bones. The implant models were divided into neck, body, and bottom models. The peak equivalent stress values of the models under a vertical 100N load were analyzed by Ansys finite element analysis software, so as to screen the structures whose peak equivalent stress value was below the bone yield strength value. Orthogonal experiments were further conducted on these structural designs to compare and analyze the peak equivalent stress values of various structural combinations of implants in different bone types under a vertical 100N loading mode, so as to obtain the effects of each design on the initial stability and determine the optimal combination of structural designs. Results In the neck type I and II jaw models, the design of the implant neck depth had the greatest effect on the initial stability. In the neck type III jaw model, the design of the implant neck pitch had the greatest effect on the initial stability. Among the various body jaw models, the implant pitch design had the greatest effect on the initial stability. In addition, the implant bottom cutting edge design could not increase the initial stability of the implant. Conclusion Different design parameters should be selected according to different bone types in clinical implant selection and further implant design. In type I and type II bones, more attention should be paid to the selection of neck and body thread depth. In type III bone, more attention should be paid to the selection of neck pitch and body depth.

Key words: Oral implant, Finite element analysis, Orthogonal experimental design, Thread design, Initial stability, Biomechanics