中国口腔种植学杂志 ›› 2021, Vol. 26 ›› Issue (3): 196-201.DOI: 10.12337/zgkqzzxzz.2021.06.010
李效宇, 蔡青, 尹昭懿, 金卓华, 王子璇, 孟维艳
收稿日期:
2021-01-07
出版日期:
2021-06-10
发布日期:
2021-07-14
通讯作者:
孟维艳,Email:mengwy@jlu.edu.cn,电话:0433-88796025
作者简介:
李效宇, 在读硕士研究生,研究方向:口腔种植学相关研究;孟维艳, 主任医师、教授、博士研究生导师,研究方向:口腔种植学相关研究
基金资助:
Li Xiaoyu, Cai Qing, Yin Zhaoyi, Jin Zhuohua, Wang Zixuan, Meng Weiyan
Received:
2021-01-07
Online:
2021-06-10
Published:
2021-07-14
Contact:
Meng Weiyan, Email: mengwy@jlu.edu.cn,Tel: 0086-433-88796025
Supported by:
摘要: 良好的骨结合是决定种植成功率和种植体远期留存率的关键。在形成骨结合的过程中,免疫细胞可通过清除种植术区组织碎片及病原菌,调节炎症反应程度,诱导间充质干细胞募集和成骨分化等,在改善局部成骨微环境及形成新生骨等方面发挥重要功能。为设计更好的免疫调节策略以在种植体周形成良好的骨结合,本文将针对不同免疫细胞在骨结合过程中发挥的具体作用及如何实现对其功能的调节作一综述。
李效宇,蔡青,尹昭懿,等. 种植体骨结合过程中免疫细胞作用的研究进展[J]. 中国口腔种植学杂志, 2021, 26(3): 196-201. DOI: 10.12337/zgkqzzxzz.2021.06.010
Li Xiaoyu, Cai Qing, Yin Zhaoyi, Jin Zhuohua, Wang Zixuan, Meng Weiyan. Research progress of immune cells in the process osseointegration[J].Chinese Journal of Oral Implantology, 2021, 26(3): 196-201.DOI: 10.12337/zgkqzzxzz.2021.06.010.
[1] Mariani E, Lisignoli G, Borzì RM, et al.Biomaterials: Foreign Bodies or Tuners for the Immune Response?[J]. Int J Mol Sci, 2019, 20(3). DOI: 10.3390/ijms20030636. [2] Hotchkiss KM, Clark NM, Olivares-Navarrete R.Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials,2018,182:202-215. DOI: 10.1016/j.biomaterials.2018.08.029. [3] Bridges AW, Singh N, Burns KL, et al.Reduced acute inflammatory responses to microgel conformal coatings[J]. Biomaterials, 2008,29(35):4605-4615. DOI: 10.1016/j.biomaterials.2008.08.015. [4] Avery SJ, Ayre WN, Sloan AJ, et al.Interrogating the Osteogenic Potential of Implant Surfaces In Vitro: A Review of Current Assays[J]. Tissue Eng Part B Rev, 2020,26(3):217-229. DOI: 10.1089/ten.TEB.2019.0312. [5] Milleret V, Buzzi S, Gehrig P, et al.Protein adsorption steers blood contact activation on engineered cobalt chromium alloy oxide layers[J]. Acta Biomater, 2015,24:343-351. DOI: 10.1016/j.actbio.2015.06.020. [6] Mariani E, Lisignoli G, Borzì RM, et al.Biomaterials: Foreign Bodies or Tuners for the Immune Response?[J]. Int J Mol Sci, 2019,20(3). DOI: 10.3390/ijms20030636. [7] Salvi GE, Bosshardt DD, Lang NP, et al.Temporal sequence of hard and soft tissue healing around titanium dental implants[J]. Periodontol 2000, 2015,68(1):135-152. DOI: 10.1111/prd.12054. [8] Hahn J, Schauer C, Czegley C, et al.Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases[J]. FASEB J, 2019,33(1):1401-1414. DOI: 10.1096/fj.201800752R. [9] Scapini P, Lapinet-Vera JA, Gasperini S, et al.The neutrophil as a cellular source of chemokines[J]. Immunol Rev, 2000,177:195-203. DOI: 10.1034/j.1600-065x.2000.17706.x. [10] Jacome-Galarza CE, Percin GI, Muller JT, et al.Developmental origin, functional maintenance and genetic rescue of osteoclasts[J]. Nature, 2019,568(7753):541-545. DOI: 10.1038/s41586-019-1105-7. [11] Monjo M, Ramis JM, Rønold HJ, et al.Correlation between molecular signals and bone bonding to titanium implants[J]. Clin Oral Implants Res, 2013,24(9):1035-1043. DOI: 10.1111/j.1600-0501.2012.02496.x. [12] Han B, Geng H, Liu L, et al.GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo[J]. Biomed Pharmacother, 2020,128:110305. DOI: 10.1016/j.biopha.2020.110305. [13] Yang C, Li J, Zhu C, et al.Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity[J]. Acta Biomater, 2019,89:403-418. DOI: 10.1016/j.actbio.2019.03.027. [14] El Kholy K, Buser D, Wittneben JG, et al.Investigating the Response of Human Neutrophils to Hydrophilic and Hydrophobic Micro-Rough Titanium Surfaces[J]. Materials (Basel),2020,13(15). DOI: 10.3390/ma13153421. [15] Pajarinen J, Lin T, Gibon E, et al.Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019,196:80-89. DOI: 10.1016/j.biomaterials.2017.12.025. [16] Sandberg OH, Tätting L, Bernhardsson ME, et al.Temporal role of macrophages in cancellous bone healing[J]. Bone, 2017,101:129-133. DOI: 10.1016/j.bone.2017.04.004. [17] Shen X, Shen X, Li B, et al.Abnormal macrophage polarization impedes the healing of diabetes-associated tooth sockets[J]. Bone, 2021,143:115618. DOI: 10.1016/j.bone.2020.115618. [18] Guihard P, Danger Y, Brounais B, et al.Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling[J]. Stem Cells, 2012,30(4):762-772. DOI: 10.1002/stem.1040. [19] Jin SS, He DQ, Luo D, et al.A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration[J]. ACS Nano, 2019,13(6):6581-6595. DOI: 10.1021/acsnano.9b00489. [20] Mahon OR, Browe DC, Gonzalez-Fernandez T, et al.Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner[J]. Biomaterials, 2020,239:119833. DOI: 10.1016/j.biomaterials.2020.119833. [21] He X, Dong Z, Cao Y, et al.MSC-Derived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing[J]. Stem Cells Int,2019,2019:7132708. DOI: 10.1155/2019/7132708. [22] Chen X, Yang B, Tian J, et al.Dental Follicle Stem Cells Ameliorate Lipopolysaccharide-Induced Inflammation by Secreting TGF-β3 and TSP-1 to Elicit Macrophage M2 Polarization[J]. Cell Physiol Biochem,2018,51(5):2290-2308. DOI: 10.1159/000495873. [23] Li M, Wei F, Yin X, et al.Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2020,109:110508. DOI: 10.1016/j.msec.2019.110508. [24] Gao A, Liao Q, Xie L, et al.Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration[J]. Biomaterials,2020,230:119642. DOI: 10.1016/j.biomaterials.2019.119642. [25] Schmitt N, Ueno H.Regulation of human helper T cell subset differentiation by cytokines[J]. Curr Opin Immunol, 2015,34:130-136. DOI: 10.1016/j.coi.2015.03.007. [26] You L, Chen L, Pan L, et al.SOST Gene Inhibits Osteogenesis from Adipose-Derived Mesenchymal Stem Cells by Inducing Th17 Cell Differentiation[J]. Cell Physiol Biochem, 2018,48(3):1030-1040. DOI: 10.1159/000491971. [27] ReinkeS, Geissler S,Taylor WR,et al.Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans[J]. Sci Transl Med, 2013, 5(177): 177ra36. DOI:10.1126/scitranslmed.3004754. [28] Hu H, Wu J, Cao C, et al.Exosomes derived from regulatory T cells ameliorate acute myocardial infarction by promoting macrophage M2 polarization[J]. IUBMB Life, 2020,72(11):2409-2419. DOI:10.1002/iub.2364. [29] Zaiss D, Gause WC, Osborne LC, et al.Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair[J]. Immunity, 2015,42(2):216-226. DOI: 10.1016/j.immuni.2015.01.020. [30] Zhu L,Hua F, Ding W, et al.The correlation between the Th17/Treg cell balance and bone health[J]. Immun Ageing, 2020,17:30. DOI: 10.1186/s12979-020-00202-z. [31] Antebi B,Zhang L,Sheyn D,et al.Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts[J]. Bioengineering (Basel), 2016,3(1). DOI: 10.3390/bioengineering3010006. [32] Zhang L, Wang T, Chang M, et al.Teriparatide Treatment Improves Bone Defect Healing Via Anabolic Effects on New Bone Formation and Non-Anabolic Effects on Inhibition of Mast Cells in a Murine Cranial Window Model[J]. J Bone Miner Res, 2017,32(9):1870-1883. DOI: 10.1002/jbmr.3178. [33] Maximiano W, da Silva E, Santana AC, et al.Mast Cell Mediators Inhibit Osteoblastic Differentiation and Extracellular Matrix Mineralization[J]. J Histochem Cytochem, 2017,65(12):723-741. DOI: 10.1369/0022155417734174. [34] Keselowsky BG, Lewis JS.Dendritic cells in the host response to implanted materials[J]. Semin Immunol, 2017,29:33-40. DOI: 10.1016/j.smim.2017.04.002. [35] Zhang L, Ke J, Wang Y, et al.An in vitro investigation of the marked impact of dendritic cell interactions with bone grafts[J]. J Biomed Mater Res A, 2017,105(6):1703-1711. DOI: 10.1002/jbm.a.36048. [36] Yang Y, Wang X, Miron RJ, et al.The interactions of dendritic cells with osteoblasts on titanium surfaces: an in vitro investigation[J]. Clin Oral Investig, 2019,23(11):4133-4143. DOI: 10.1007/s00784-019-02852-w. [37] Almas K, Smith S, Kutkut A.What is the Best Micro and Macro Dental Implant Topography?[J]. Dent Clin North Am, 2019,63(3):447-460. DOI: 10.1016/j.cden.2019.02.010. [38] Alfarsi MA, Hamlet SM, Ivanovski S.The Effect of Platelet Proteins Released in Response to Titanium Implant Surfaces on Macrophage Pro-Inflammatory Cytokine Gene Expression[J]. Clin Implant Dent Relat Res, 2015,17(6):1036-1047. DOI: 10.1111/cid.12231. [39] Ma QL, Fang L, Jiang N, et al.Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces[J]. Biomaterials, 2018,154:234-247. DOI: 10.1016/j.biomaterials.2017.11.003. [40] He Y, Luo J, Zhang Y, et al.The unique regulation of implant surface nanostructure on macrophages M1 polarization[J]. Mater Sci Eng C Mater Biol Appl, 2020,106:110221. DOI: 10.1016/j.msec.2019.110221. [41] Chen L, Wang D, Peng F, et al.Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages[J]. Nano Lett, 2019,19(6):3480-3489. DOI: 10.1021/acs.nanolett.9b00237. [42] Visalakshan RM, MacGregor MN, Sasidharan S, et al.Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses[J]. ACS Appl Mater Interfaces, 2019,11(31):27615-27623. DOI: 10.1021/acsami.9b09900. [43] Kou PM, Schwartz Z, Boyan BD, et al.Dendritic cell responses to surface properties of clinical titanium surfaces[J]. Acta Biomater, 2011,7(3):1354-1363. DOI: 10.1016/j.actbio.2010.10.020. [44] Wang Y, Qi H, Miron RJ, et al.Modulating macrophage polarization on titanium implant surface by poly(dopamine)-assisted immobilization of IL4[J]. Clin Implant Dent Relat Res, 2019,21(5):977-986. DOI: 10.1111/cid.12819. [45] Li M, Wei F, Yin X, et al.Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2020,109:110508. DOI: 10.1016/j.msec.2019.110508. [46] Zhang R, Liu X, Xiong Z, et al.The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis[J]. Artif Cells Nanomed Biotechnol, 2018,46(sup1):1123-1130. DOI: 10.1080/21691401.2018.1446442. [47] Huang Q, Ouyang Z, Tan Y, et al.Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate[J]. Acta Biomater, 2019,100:415-426. DOI: 10.1016/j.actbio.2019.09.030. |
[1] | 李效宇, 何捷, 王雪珂, 段静旖, 葛畅, 孟维艳. 应用骨胶原结合帐篷技术行上颌后牙连续缺失垂直骨增量一例[J]. 中国口腔种植学杂志, 2023, 28(2): 97-101. |
[2] | 赵满, 郑亚琪, 闫征斌, 李晓敏, 杨晓喻. 下颌骨纤维骨性病变致种植失败一例及文献回顾[J]. 中国口腔种植学杂志, 2022, 27(6): 346-351. |
[3] | 陈江. 机器人在口腔种植领域的应用[J]. 中国口腔种植学杂志, 2022, 27(5): 274-279. |
[4] | 钱印杰, 姒蜜思. 亲水性大颗粒喷砂酸蚀表面种植体促进骨缺损区域骨结合的研究进展[J]. 中国口腔种植学杂志, 2022, 27(5): 317-321. |
[5] | 郭永青, 马允, 于皓. 种植支持式固定义齿被动就位的临床检测方法[J]. 中国口腔种植学杂志, 2022, 27(4): 243-247. |
[6] | 苏天月, 滕微微, 王琦, 舒倩怡, 周立波. 口腔种植体植入精度评估方法的应用进展[J]. 中国口腔种植学杂志, 2022, 27(4): 248-253. |
[7] | 蒋瑞芳, 张艳芳, 李雪, 刘浏, 薛芃. 动态导航技术在口腔种植教学中的应用研究[J]. 中国口腔种植学杂志, 2022, 27(4): 254-258. |
[8] | 倪婷, 张亮, 韩泽奎, 王心彧, 段峰. 数字化导板辅助种植6颗平行种植体精确度分析[J]. 中国口腔种植学杂志, 2022, 27(3): 140-146. |
[9] | 付丽, 徐彦雪, 王林. 口腔种植学“课程思政”教学的初步探索[J]. 中国口腔种植学杂志, 2022, 27(3): 188-192. |
[10] | 杨晶晶, 余正荣, 龚金梅, 胡常琦, 黄江琴, 魏洪武, 郭水根. 种植体根尖周病变1例及文献回顾[J]. 中国口腔种植学杂志, 2022, 27(2): 99-104. |
[11] | 罗少康, 李树春. 侧壁开窗上颌窦底提升的术中并发症研究进展[J]. 中国口腔种植学杂志, 2022, 27(2): 119-123. |
[12] | 李顺顺, 王凤. 选择性五羟色胺再摄取抑制剂对骨骼系统及口腔种植体骨结合影响的研究进展[J]. 中国口腔种植学杂志, 2022, 27(2): 124-129. |
[13] | 蓝耕良, 陶宝鑫, 黄伟, 王凤, 李顺顺, 吴轶群. 动态导航引导颧种植体植入的临床工作流程[J]. 中国口腔种植学杂志, 2022, 27(1): 9-15. |
[14] | 齐俊男, 付丽. 巨噬细胞在骨修复及生物材料整合中的作用[J]. 中国口腔种植学杂志, 2022, 27(1): 54-57. |
[15] | 甄子澄, 燕寒, 朱红梅, 张燕. 口腔种植修复专科电子病历系统的开发和应用[J]. 中国口腔种植学杂志, 2021, 26(6): 391-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||