[1] Rakhmatia YD, Ayukawa Y, Furuhashi A, et al.Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications[J]. J Prosthodont Res, 2013,57(1):3-14. DOI: 10.1016/j.jpor.2012.12.001. [2] Hasegawa H, Masui S, Ishihata H, et al.Evaluation of a newly designed microperforated pure titanium membrane for guided bone regeneration[J]. Int J Oral Maxillofac Implants, 2019,34(2):411-422. DOI: 10.11607/jomi.6777. [3] Xie Y, Li S, Zhang T, et al.Titanium mesh for bone augmentation in oral implantology: current application and progress[J]. Int J Oral Sci, 2020,12(1):37. DOI: 10.1038/s41368-020-00107-z. [4] Yi T, Zhou C, Ma L, et al.Direct 3-D printing of Ti-6Al-4V/HA composite porous scaffolds for customized mechanical properties and biological functions[J]. J Tissue Eng Regen Med, 2020,14(3):486-496. DOI: 10.1002/term.3013. [5] Ma H, Feng C, Chang J, et al.3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy[J]. Acta Biomater, 2018,79:37-59. DOI: 10.1016/j.actbio.2018.08.026. [6] Sumida T, Otawa N, Kamata YU, et al.Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh[J]. J Craniomaxillofac Surg, 2015,43(10):2183-2188. DOI: 10.1016/j.jcms.2015.10.020. [7] Dellavia C, Canciani E, Pellegrini G, et al.Histological assessment of mandibular bone tissue after guided bone regeneration with customized computer-aided design/computer-assisted manufacture titanium mesh in humans: a cohort study[J]. Clin Implant Dent Relat Res, 2021,23(4):600-611. DOI: 10.1111/cid.13025. [8] Tallarico M, Park CJ, Lumbau AI, et al.Customized 3D-printed titanium mesh developed to regenerate a complex bone defect in the aesthetic zone: a case report approached with a fully digital workflow[J]. Materials (Basel), 2020,13(17):3874. DOI: 10.3390/ma13173874. [9] Li S, Zhang T, Zhou M, et al.A novel digital and visualized guided bone regeneration procedure and digital precise bone augmentation: a case series[J]. Clin Implant Dent Relat Res, 2021,23(1):19-30. DOI: 10.1111/cid.12959. [10] Lizio G, Pellegrino G, Corinaldesi G, et al.Guided bone regeneration using titanium mesh to augment 3-dimensional alveolar defects prior to implant placement. A pilot study[J]. Clin Oral Implants Res. 2022,33(6):607-621. DOI: 10.1111/clr.13922. [11] Giragosyan K, Chenchev I, Ivanova V, et al.Immunological response to nonresorbable barrier membranes used for guided bone regeneration and formation of pseudo periosteum: a narrative review[J]. Folia Med (Plovdiv), 2022,64(1):13-20. DOI: 10.3897/folmed.64.e60553. [12] Sagheb K, Schiegnitz E, Moergel M, et al.Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh[J]. Int J Implant Dent, 2017,3(1):36. DOI: 10.1186/s40729-017-0097-z. [13] Hartmann A, Hildebrandt H, Schmohl JU, et al.Evaluation of risk parameters in bone regeneration using a customized titanium mesh: results of a clinical study[J]. Implant Dent, 2019,28(6):543-550. DOI: 10.1097/ID.0000000000000933. [14] Wang H, Su K, Su L, et al.Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2019,104:109908. DOI: 10.1016/j.msec.2019.109908. [15] Chou DT, Wells D, Hong D, et al.Novel processing of iron-manganese alloy-based biomaterials by inkjet 3D printing[J]. Acta Biomater, 2013,9(10):8593-8603. DOI: 10.1016/j.actbio.2013.04.016. [16] Liu YJ, Yang ZY, Tan LL, et al.An animal experimental study of porous magnesium scaffold degradation and osteogenesis[J]. Braz J Med Biol Res, 2014,47(8):715-720. DOI: 10.1590/1414-431x20144009. [17] Najeeb S, Zafar MS, Khurshid Z, et al.Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics[J]. J Prosthodont Res, 2016,60(1):12-19. DOI: 10.1016/j.jpor. 2015.10.001. [18] Katzer A, Marquardt H, Westendorf J, et al.Polyetheretherketone--cytotoxicity and mutagenicity in vitro[J]. Biomaterials, 2002,23(8):1749-1759. DOI: 10.1016/s0142-9612(01)00300-3. [19] Li L, Gao H, Wang C, et al.Assessment of customized alveolar bone augmentation using titanium scaffolds vs polyetheretherketone (PEEK) scaffolds: a comparative study based on 3D printing technology[J]. ACS Biomater Sci Eng, 2022,8(5):2028-2039. DOI: 10.1021/acsbiomaterials.2c00060. [20] El Morsy OA, Barakat A, Mekhemer S, et al.Assessment of 3-dimensional bone augmentation of severely atrophied maxillary alveolar ridges using patient-specific poly ether-ether ketone (PEEK) sheets[J]. Clin Implant Dent Relat Res, 2020,22(2):148-155. DOI: 10.1111/cid.12890. [21] Mounir M, Shalash M, Mounir S, et al.Assessment of three dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized poly-ether-ether-ketone (PEEK) mesh: a randomized clinical trial[J]. Clin Implant Dent Relat Res, 2019,21(5):960-967. DOI: 10.1111/cid.12748. [22] Hamsho R, Mahardawi B, Assi H, et al.Polyetheretherketone (PEEK) implant for the reconstruction of severe destruction in the maxilla: case report[J]. Plast Reconstr Surg Glob Open, 2022,10(8):e4473. DOI: 10.1097/GOX.0000000000004473. [23] Schwitalla A, Müller WD.PEEK dental implants: a review of the literature[J]. J Oral Implantol, 2013,39(6):743-749. DOI: 10.1563/AAID-JOI-D-11-00002. [24] Chen Y, Li W, Zhang C, et al.Recent developments of biomaterials for additive manufacturing of bone scaffolds[J]. Adv Healthc Mater, 2020:e2000724. DOI: 10.1002/adhm.202000724. [25] Zhao H, Wang X, Zhang W, et al.Bioclickable mussel-derived peptides with immunoregulation for osseointegration of PEEK[J]. Front Bioeng Biotechnol, 2021,9:780609. DOI: 10.3389/fbioe.2021.780609. [26] Rosinski CL, Patel S, Geever B, et al.A retrospective comparative analysis of titanium mesh and custom implants for cranioplasty[J]. Neurosurgery, 2020,86(1):e15-e22. DOI: 10.1093/neuros /nyz358. [27] Sasaki JI, Abe GL, Li A, et al.Barrier membranes for tissue regeneration in dentistry[J].Biomater Investig Dent, 2021,8(1):54-63. DOI: 10.1080/26415275.2021.1925556. [28] Puertas-Bartolomé M, Mora-Boza A, García-Fernández L.Emerging biofabrication techniques: a review on natural polymers for biomedical applications[J]. Polymers (Basel), 2021,13(8):1209. DOI: 10.3390/polym13081209. [29] Murariu M, Dubois P.PLA composites: from production to properties[J]. Adv Drug Deliv Rev, 2016,107:17-46. DOI: 10.1016/j.addr.2016.04.003. [30] Zhang S, Liu J, Zhou W, et al.Interfacial fabrication and property of hydroxyapatite/ polylactide resorbable bone fixation composites[J]. Curr appl phys, 2005, 5(5): 516-518.DOI: 10.1016/j.cap.2005.01.023. [31] Chen X, Gao C, Jiang J, et al.3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration[J]. Biomed Mater, 2019,14(6):065003. DOI: 10.1088/1748-605X/ab388d. [32] Zhang H, Mao X, Du Z, et al.Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model[J]. Sci Technol Adv Mater, 2016,17(1):136-148. DOI: 10.1080/14686996.2016.1145532. [33] Sun H, Mei L, Song C, et al.The in vivo degradation, absorption and excretion of PCL-based implant[J]. Biomaterials, 2006,27(9):1735-1740. DOI: 10.1016/j.biomaterials.2005.09.019. [34] Won JY, Park CY, Bae JH, et al.Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model[J]. Biomed Mater, 2016,11(5):055013. DOI: 10.1088/1748-6041/11/5/055013. [35] Bruyas A, Lou F, Stahl AM, et al.Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity[J]. J Mater Res, 2018,33(14):1948-1959. DOI: 10.1557/jmr.2018.112. [36] Lee JY, Park JY, Hong IP, et al.3D-Printed barrier membrane using mixture of polycaprolactone and beta-tricalcium phosphate for regeneration of rabbit calvarial defects[J]. Materials (Basel), 2021,14:3280.DOI: 10.3390/ma14123280. [37] Shim JH, Won JY, Park JH, et al.Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration[J]. Int J Mol Sci, 2017,18(5):899.DOI: 10.3390/ijms18050899. [38] Park H, Choi JW, Jeong WS.Clinical application of three-dimensional printing of polycaprolactone/beta-tricalcium phosphate implants for cranial reconstruction[J]. J Craniofac Surg, 2022,33(5):1394-1399. DOI: 10.1097/SCS.0000000000008595. [39] Raveau S, Jordana F.Tissue Engineering and three-dimensional printing in periodontal regeneration: a literature review[J]. J Clin Med, 2020,9(12): 4008.DOI: 10.3390/jcm9124008. [40] Cho H, Tarafder S, Fogge M, et al.Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface[J]. Connect Tissue Res, 2016,57(6):488-495. DOI: 10.1080/03008207.2016.1191478. [41] Khojasteh A, Behnia H, Hosseini FS, et al.The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report[J]. J Biomed Mater Res B Appl Biomater, 2013,101(5):848-854. DOI: 10.1002/jbm.b.32889. [42] Chen X, Gao C, Jiang J, et al.3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration[J]. Biomed Mater, 2019,14(6):065003. DOI: 10.1088/1748-605X/ab388d. [43] Shim J, Won J, Sung S, et al.Comparative efficacies of a 3D-printed PCL/ PLGA/β-TCP membrane and a titanium membrane for guided bone regeneration in beagle dogs[J]. Polymers (Basel), 2015, 7(10): 2061-2077.DOI:10.3390/polym7101500. |