[1] Pierre C, Bertrand G, Rey C, et al.Calcium phosphate coatings elaborated by the soaking process on titanium dental implants: Surface preparation, processing and physical-chemical characterization[J]. Dent Mater, 2019,35(2):e25-e35. DOI: 10.1016/j.dental.2018.10.005. [2] Liu P, Hao Y, Zhao Y, et al.Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties[J]. Colloids Surf B Biointerfaces, 2017,160:110-116. DOI: 10.1016/j.colsurfb.2017.08.044. [3] Wang Q, Zhou P, Liu S, et al.Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review[J]. Nanomaterials (Basel), 2020,10(6):1244. DOI: 10.3390/nano10061244. [4] Li G,Cao H,Zhang W et al.Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment.[J] .ACS Appl Mater Interfaces, 2016, 8: 3840-52. DOI: 10.1021/acsami.5b10633. [5] Zhou W, Huang O, Gan Y, et al.Effect of titanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):290-299. DOI: 10.1080/21691401.2018.1553784. [6] Karimi N, Kharaziha M, Raeissi K.Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics[J]. Mater Sci Eng C Mater Biol Appl, 2019,98:140-152. DOI: 10.1016/j.msec.2018.12.136. [7] Sharma A, McQuillan AJ, Sharma LA, et al.Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment[J]. J Mater Sci Mater Med, 2015,26(8):221. DOI: 10.1007/s10856-015-5555-7. [8] Sharma A, McQuillan AJ, Shibata Y, et al.Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces[J]. J Mater Sci Mater Med, 2016,27(5):86. DOI: 10.1007/s10856-016-5695-4. [9] Shen X, Al-Baadani MA, He H, et al.Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo[J]. Int J Nanomedicine, 2019,14:3043-3054. DOI: 10.2147/IJN.S198583. [10] von Wilmowsky C, Bauer S, Roedl S, et al.The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo[J]. Clin Oral Implants Res, 2012,23(3):359-366. DOI: 10.1111/j.1600-0501.2010.02139.x. [11] Wang N, Li H, Lü W, et al.Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs[J]. Biomaterials, 2011,32(29):6900-6911. DOI: 10.1016/j.biomaterials.2011.06.023. [12] A.Sasireka,Renji Rajendran,V.Raj.In vitro corrosion resistance and cytocompatibility of minerals substituted apatite/biopolymers duplex coatings on anodized Ti for orthopedic implant applications[J]. Arabian Journal of Chemistry,2020,13(8):6312-6326. DOI: 10.1016/j.arabjc.2020.05.031 [13] Mansoorianfar M, Khataee A, Riahi Z, et al.Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications[J]. Ultrason Sonochem, 2020,64:104783. DOI: 10.1016/j.ultsonch.2019.104783. [14] Dong Y, Ye H, Liu Y, et al.pH dependent silver nanoparticles releasing titanium implant: A novel therapeutic approach to control peri-implant infection[J]. Colloids Surf B Biointerfaces, 2017,158:127-136. DOI: 10.1016/j.colsurfb.2017.06.034. [15] Radtke A, Grodzicka M, Ehlert M, et al.Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants[J]. Int J Mol Sci, 2018,19(12). DOI: 10.3390/ijms19123962. [16] Huirong Li,Qiang Cui,Bo Feng,et al.Antibacterial activity of TiO 2 nanotubes: Influence of crystal phase, morphology and Ag deposition[J]. Applied Surface Science,2013,284:179-183. DOI:10.1016/j.apsusc.2013.07.076. [17] Liu W, Su P, Gonzales A 3rd, et al.Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling[J]. Int J Nanomedicine, 2015,10:1997-2019. DOI: 10.2147/IJN.S74418. [18] Wang Q, Huang JY, Li HQ, et al.Recent advances on smart TiO(2) nanotube platforms for sustainable drug delivery applications[J]. Int J Nanomedicine, 2017,12:151-165. DOI: 10.2147/IJN.S117498. [19] Aiempanakit K, Jessadaluk S, Tongmaha S, et al.Vertical Alignment TiO2 Nanotube Based on Ti Film Prepared via Anodization Technique[J]. Key Engineering Materials, 2016, 675-676:167-170. DOI:10.4028/www.scientific.net/KEM.675-676.167. [20] Rocci A, Martignoni M, Gottlow J.Immediate loading of Brnemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial.[J]. Clinical Implant Dentistry and Related Research, 2010, 5(s1):57-63. DOI: 10.1111/j.1708-8208.2003.tb00016.x. [21] Degidi M, Perrotti V, Piattelli A.Immediately loaded titanium implants with a porous anodized surface with at least 36 months of follow-up[J]. Clin Implant Dent Relat Res, 2006,8(4):169-177. DOI: 10.1111/j.1708-8208.2006.00008.x. [22] Pimentel Lopes de Oliveira GJ, Leite FC, Pontes AE, et al.Comparison of the Primary and Secondary Stability of Implants with Anodized Surfaces and Implants Treated by Acids: A Split-Mouth Randomized Controlled Clinical Trial[J]. Int J Oral Maxillofac Implants, 2016,31(1):186-190. DOI: 10.11607/jomi.4212. [23] Rocci A, Rocci M, Rocci C, et al.Immediate loading of Brånemark system TiUnite and machined-surface implants in the posterior mandible, part II: a randomized open-ended 9-year follow-up clinical trial[J]. Int J Oral Maxillofac Implants, 2013,28(3):891-895. DOI: 10.11607/jomi.2397. [24] Tian C, Tseng S, Hung WY.Redesigning the macrostructure of dental implants[J]. Dent Today, 2012,31(4):88, 90-91. |