中国口腔种植学杂志 ›› 2022, Vol. 27 ›› Issue (6): 371-375.DOI: 10.12337/zgkqzzxzz.2022.12.008
顾腾, 王旭冉, 王鹏来
收稿日期:
2022-10-10
出版日期:
2022-12-30
发布日期:
2023-01-03
通讯作者:
王鹏来,Email:wpl0771@163.com,电话:0516-85645181
作者简介:
顾腾, 硕士研究生在读,研究方向:口腔种植体表面改性; 王鹏来, 教授、主任医师、研究生导师,研究方向:各类牙齿缺失的种植技术、正颌外科及唇腭裂的序列治疗
Gu Teng, Wang Xuran, Wang Penglai
Received:
2022-10-10
Online:
2022-12-30
Published:
2023-01-03
Contact:
Wang Penglai, Email: wpl0771@163.com, Tel: 0086-516-85645181
摘要: 聚醚醚酮(PEEK)具有良好的力学性能、出色的生物相容性,且弹性模量接近于骨,避免对骨产生应力屏蔽作用,减少骨吸收,已逐渐应用于口腔种植领域。但PEEK表面生物惰性限制了其在口腔种植中的临床应用,如何对PEEK进行改性,优化其生物活性成了目前科研人员研究的热点。本文就聚醚醚酮改性应用于种植体的研究进展作一系统综述。
顾腾,等王旭冉,等王鹏来. 聚醚醚酮改性应用于种植体的研究进展[J]. 中国口腔种植学杂志, 2022, 27(6): 371-375. DOI: 10.12337/zgkqzzxzz.2022.12.008
Gu Teng, Wang Xuran, Wang Penglai. Research progress on the modification of polyetheretherketone for implant applications[J].Chinese Journal of Oral Implantology, 2022, 27(6): 371-375.DOI: 10.12337/zgkqzzxzz.2022.12.008.
[1] Brånemark PI, Adell R, Breine U, et al.Intra-osseous anchorage of dental prostheses. I. Experimental studies[J]. Scand J Plast Reconstr Surg, 1969,3(2):81-100. DOI: 10.3109/02844316909036699. [2] Yamaguchi H, Takahashi M, Sasaki K, et al.Mechanical properties and microstructures of cast dental Ti-Fe alloys[J]. Dent Mater J, 2021,40(1):61-67. DOI: 10.4012/dmj.2019-254. [3] Lee WT, Koak JY, Lim YJ, et al.Stress shielding and fatigue limits of poly- ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012,100(4):1044-1052. DOI: 10.1002/jbm.b.32669. [4] Lee WT, Koak JY, Lim YJ, et al.Stress shielding and fatigue limits of poly- ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012,100(4):1044-1052. DOI: 10.1002/jbm.b.32669. [5] Huiskes R, Ruimerman R, van Lenthe GH, et al. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone[J]. Nature, 2000,405(6787): 704-706. DOI: 10.1038/35015116. [6] Eschbach L. Nonresorbable polymers in bone surgery[J]. Injury, 2000,31 Suppl 4:22-27. DOI: 10.1016/s0020-1383(00)80019-4. [7] Ouyang L, Zhao Y, Jin G, et al.Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK[J]. Biomaterials, 2016,83:115-126. DOI: 10.1016/j.biomaterials.2016.01.017. [8] Buck E, Li H, Cerruti M.Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites[J]. Macromol Biosci, 2020,20(2):e1900271. DOI: 10.1002/mabi.201900271. [9] Rahmitasari F, Ishida Y, Kurahashi K, et al.PEEK with reinforced materials and modifications for dental implant applications[J]. Dent J (Basel), 2017,5(4):35.DOI: 10.3390/dj5040035. [10] Dua R, Rashad Z, Spears J, et al.Applications of 3D-printed PEEK via fused filament fabrication: a systematic review[J]. Polymers (Basel), 2021,13(22): 4046. DOI: 10.3390/polym13224046. [11] Sakoda H, Uematsu M, Okamoto Y, et al.In vitro evaluation of delamination resistance of PEEK and CFR-PEEK[J]. Proc Inst Mech Eng H, 2022,236(2):279-285. DOI: 10.1177/09544119211042992. [12] Peng TY, Shih YH, Hsia SM, et al.In vitro assessment of the cell metabolic activity, cytotoxicity,cell attachment, and inflammatory reaction of human oral fibroblasts on polyetheretherketone (PEEK) implant-abutment[J]. Polymers (Basel), 2021,13(17):2995.DOI: 10.3390/polym13172995. [13] Lee WT, Koak JY, Lim YJ, et al.Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012,100(4):1044-1052. DOI: 10.1002/jbm.b.32669. [14] Panayotov IV, Orti V, Cuisinier F, et al.Polyetheretherketone (PEEK) for medical applications[J]. J Mater Sci Mater Med, 2016,27(7):118. DOI: 10.1007/s10856-016- 5731-4. [15] Ma R, Tang T.Current strategies to improve the bioactivity of PEEK[J]. Int J Mol Sci, 2014,15(4):5426-5445. DOI: 10.3390/ijms15045426. [16] 崔晶晶, 李启期, 魏杰, 等. 喷砂对纳米氟磷灰石聚醚醚酮种植体骨结合影响的实验研究[J].口腔颌面外科杂志, 2014, 24(1):16-20. DOI: 10.3969/j.issn.1005- 4979. 2014.01.004. [17] Xu A, Liu X, Gao X, et al.Enhancement of osteogenesis on micro/nano- topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite[J]. Mater Sci Eng C Mater Biol Appl, 2015,48:592-598. DOI: 10.1016/ j.msec.2014.12.061. [18] Fu Q, Gabriel M, Schmidt F, et al.The impact of different low-pressure plasma types on the physical, chemical and biological surface properties of PEEK[J]. Dent Mater, 2021,37(1):e15-e22. DOI: 10.1016/j.dental.2020.09.020. [19] Waser-Althaus J, Salamon A, Waser M, et al.Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone[J]. J Mater Sci Mater Med, 2014,25(2):515-525. DOI: 10.1007/s10856-013-5072-5. [20] 肖天华, 刘荣涛, 庞贻宇, 等. 骨植入聚醚醚酮材料表面改性的研究进展[J].广东工业大学学报,2021,38(2):73-82. DOI: 10.12052/gdutxb.200118. [21] Yu X, Ibrahim M, Liu Z, et al.Biofunctional Mg coating on PEEK for improving bioactivity[J]. Bioact Mater, 2018,3(2):139-143. DOI: 10.1016/j.bioactmat.2018.01. 007. [22] Preischl C, Le LH, Bilgilisoy E, et al.Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing[J]. Beilstein J Nanotechnol, 2021,12:319-329. DOI: 10.3762/bjnano.12.26. [23] Han CM, Lee EJ, Kim HE, et al.The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties[J]. Biomaterials, 2010,31(13):3465-3470. DOI: 10.1016/j.biomaterials.2009.12.030. [24] Han CM, Jang TS, Kim HE, et al.Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein[J]. J Biomed Mater Res A, 2014,102(3):793-800. DOI: 10.1002/jbm.a.34748. [25] Ma R, Wang J, Li C, et al.Effects of different sulfonation times and post- treatment methods on the characterization and cytocompatibility of sulfonated PEEK[J]. J Biomater Appl, 2020,35(3):342-352. DOI: 10.1177/0885328220935008. [26] Yang C, Ouyang L, Wang W, et al.Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections[J]. J Mater Chem B, 2019,7(36):5541-5553. DOI: 10.1039/c9tb01298b. [27] Yuan Z, Long T, Zhang J, et al.3D printed porous sulfonated polyetheretherketone scaffold for cartilage repair: potential and limitation[J]. J Orthop Translat, 2022,33:90-106. DOI: 10.1016/j.jot.2022.02.005. [28] Loozen LD, Kruyt MC, Kragten A, et al.BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration[J]. PLoS One, 2019,14(7):e0220028. DOI: 10.1371/journal.pone.0220028. [29] Wang S, Yang Y, Li Y, et al.Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant[J]. Colloids Surf B Biointerfaces, 2019,176:38-46. DOI: 10.1016/j.colsurfb.2018.12.056. [30] 余和东, 陈永吉, 毛敏, 等. 聚醚醚酮/双相生物陶瓷复合材料包裹血管内皮生长因子修复下颌骨缺损[J].中国组织工程研究,2019,23(2):184-189. DOI: 10.3969/j.issn. 2095-4344.1505. [31] Ding R, Chen T, Xu Q, et al.Mixed modification of the surface microstructure and chemical state of polyetheretherketone to improve its antimicrobial activity, hydrophilicity, cell adhesion, and bone integration[J]. ACS Biomater Sci Eng, 2020,6(2):842-851. DOI: 10.1021/acsbiomaterials.9b01148. [32] Hassan E, Elagib T, Memon H, et al.Surface modification of carbon fibers by grafting PEEK-NH2 for improving interfacial adhesion with polyetheretherketone[J]. Materials (Basel), 2019,12(5):778.DOI: 10.3390/ma12050778. [33] Eliaz N, Metoki N.Calcium Phosphate Bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials (Basel), 2017,10(4):334.DOI: 10.3390/ma10040334. [34] Oyane A, Nakamura M, Sakamaki I, et al.Laser-assisted wet coating of calcium phosphate for surface-functionalization of PEEK[J]. PLoS One, 2018,13(10): e0206524. DOI: 10.1371/journal.pone.0206524. [35] Sunarso, Tsuchiya A, Toita R, et al. Enhanced osseointegration capability of poly(ether ether ketone) via combined phosphate and calcium surface- functionalization[J]. Int J Mol Sci, 2019,21(1):198.DOI: 10.3390/ijms21010198. [36] Ouyang L, Deng Y, Yang L, et al.Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant[J]. Macromol Biosci, 2018,18(6):e1800036. DOI: 10.1002/ mabi.201800036. [37] Yan JH, Wang CH, Li KW, et al.Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification[J]. 2018,13:3425-3440. [38] Cheng BC, Koduri S, Wing CA, et al.Porous titanium-coated polyetheretherketone implants exhibit an improved bone-implant interface: an in vitro and in vivo biochemical, biomechanical, and histological study[J]. Med Devices (Auckl), 2018,11:391-402. DOI: 10.2147/MDER.S180482. [39] Günzel R,Brutscher J.Sheath dynamics in plasma immersion ion implantation[J]. Surface and Coatings Technology,1996,85:98-104.DOI:10.1016/0257 -8972(96) 02883-6. [40] Wakelin EA, Yeo GC, McKenzie DR, et al. Plasma ion implantation enabled bio-functionalization of PEEK improves osteoblastic activity[J]. APL Bioeng, 2018,2(2):026109. DOI: 10.1063/1.5010346. [41] Wang H, Lu T, Meng F, et al.Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation[J]. Colloids Surf B Biointerfaces, 2014,117:89-97. DOI: 10.1016/j.colsurfb.2014.02.019. [42] Tsou HK, Hsieh PY, Chung CJ, et al.Low-temperature deposition of anatase TiO2 on medical grade polyetheretherketone to assist osseous integration[J].Surf Coat Technol,2009,204(6/7):1121-1125.DOI:10.1016/j.surfcoat.2009.06.018. [43] Thanigachalam M, Muthusamy Subramanian AV.Evaluation of PEEK-TiO(2)- SiO(2) nanocomposite as biomedical implants with regard to in-vitro biocompatibility and material characterization[J]. J Biomater Sci Polym Ed, 2022,33(6):727-746. DOI: 10.1080/09205063.2021.2014028. [44] Le Guéhennec L, Soueidan A, Layrolle P, et al.Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007,23(7):844-854. DOI: 10.1016/j.dental.2006.06.025. [45] Ma R, Guo D.Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite[J]. J Orthop Surg Res, 2019,14(1):32. DOI: 10.1186/s13018-019-1069-1. [46] Prasher P, Singh M, Mudila H.Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges[J]. 3 Biotech, 2018,8(10):411. DOI: 10.1007/s13205-018-1436-3. [47] Jiang J, You D, Wang Q, et al.Novel fabrication and biological characterizations of AgNPs-decorated PEEK with gelatin functional nanocomposite to improve superior biomedical applications[J]. J Biomater Sci Polym Ed, 2022,33(5):590-604. DOI: 10.1080/09205063.2021.2004632. |
[1] | 罗桂生, 刘雨蒙, 王鹏来, 袁长永. 微量元素改性PEEK种植体的研究进展[J]. 中国口腔种植学杂志, 2023, 28(2): 109-113. |
[2] | 刘月, 赵雅君, 刘金, 杜密, 兰晶. 种植体周微生物特点及其在疾病状态下的变化[J]. 中国口腔种植学杂志, 2023, 28(1): 35-39. |
[3] | 皮雪敏, 刘倩, 陈德平, 任斌, 潘红, 宿玉成. 上颌窦底提升方案的决策原则(三)[J]. 中国口腔种植学杂志, 2023, 28(1): 58-66. |
[4] | 中华口腔医学会口腔种植专业委员会. 上颌窦底提升并发症的专家共识:种植体脱入上颌窦(第一版)[J]. 中国口腔种植学杂志, 2022, 27(5): 264-268. |
[5] | 张启航, 龚佳明, 苟萍, 余佳颖, 薄磊, 余占海. 种植体间距对种植体周骨吸收影响的Meta分析[J]. 中国口腔种植学杂志, 2022, 27(5): 304-311. |
[6] | 中华口腔医学会口腔种植专业委员会. 上颌窦底提升并发症的专家共识:种植体周病(第一版)[J]. 中国口腔种植学杂志, 2022, 27(3): 135-139. |
[7] | 郑泽君, 程瑞修, 李长清, 孙大卫, 张领辉, 宋丽丽. 内镜辅助侧壁开窗上颌窦底提升的临床效果(附25例病例报告)[J]. 中国口腔种植学杂志, 2022, 27(3): 169-172. |
[8] | 龚佳明, 赵瑞敏, 王佳, 戴志明, 余占海, 殷丽华. 种植体周囊肿的系统性文献综述[J]. 中国口腔种植学杂志, 2022, 27(3): 181-187. |
[9] | 王璇, 段彦盛, 宋爽, 王舒妍, 赵国强, 赵文爽, 杨瑞, 田欢, 刘向东, 陈旭涛, 丁锋, 宋应亮, 张思佳. 初探选择性激光熔融钛表面的形态特征及机械性能[J]. 中国口腔种植学杂志, 2022, 27(2): 82-86. |
[10] | 李媛媛, 崔晓艺, 何宝杰. 种植体周菌斑控制不同情况下牙周炎与种植体周黏膜炎的相关性研究[J]. 中国口腔种植学杂志, 2022, 27(2): 87-92. |
[11] | 杨晶晶, 余正荣, 龚金梅, 胡常琦, 黄江琴, 魏洪武, 郭水根. 种植体根尖周病变1例及文献回顾[J]. 中国口腔种植学杂志, 2022, 27(2): 99-104. |
[12] | 俞维君, 胡淑澄, 姜滨, 曹逸枫, 陆尔奕. 成人单侧后牙锁牙合的种植治疗[J]. 中国口腔种植学杂志, 2022, 27(2): 105-111. |
[13] | 蓝耕良, 陶宝鑫, 黄伟, 王凤, 李顺顺, 吴轶群. 动态导航引导颧种植体植入的临床工作流程[J]. 中国口腔种植学杂志, 2022, 27(1): 9-15. |
[14] | 杨晶晶, 胡常琦, 余正荣, 龚金梅, 黄江琴, 魏洪武. 4种不同穿龈高度的修复基台对边缘骨吸收影响的5年临床观察[J]. 中国口腔种植学杂志, 2022, 27(1): 22-27. |
[15] | 张皖婷, 何家才. 82颗失败种植体的影响因素分析[J]. 中国口腔种植学杂志, 2022, 27(1): 28-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||