Chinese Journal of Oral Implantology ›› 2023, Vol. 28 ›› Issue (2): 109-113.DOI: 10.12337/zgkqzzxzz.2023.04.007
• Reviews • Previous Articles Next Articles
Luo Guisheng1, Liu Yumeng1, Wang Penglai1,2, Yuan Changyong1,2
Received:
2022-11-02
Online:
2023-04-30
Published:
2023-05-04
Contact:
Yuan Changyong, Email: Supported by:
Luo Guisheng, Liu Yumeng, Wang Penglai, Yuan Changyong. Research progress on trace elements modification of PEEK implant[J]. Chinese Journal of Oral Implantology, 2023, 28(2): 109-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2023.04.007
[1] 马寒夕, 栗兴超. 种植体周围骨吸收影响因素研究进展[J].吉林医学,2022,43(7): 1967-1970. DOI: 10.3969/j.issn.1004-0412.2022.07.081. [2] Brizuela A, Herrero-Climent M, Rios-Carrasco E, et al.Influence of the elastic modulus on the osseointegration of dental implants[J]. Materials (Basel), 2019,12(6):980.DOI: 10.3390/ma12060980. [3] Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review[J]. Clin Oral Implants Res, 2018,29 Suppl 18:37-53. DOI: 10.1111/clr.13305. [4] Ma Z, Zhao X, Zhao J, et al.Biologically modified polyether ether ketone as dental implant material[J]. Front Bioeng Biotechnol, 2020, 8: 620537. DOI: 10.3389/fbioe.2020.620537. [5] Huang R, Shao P, Burns CM, et al.Sulfonation of poly(ether ether ketone)(PEEK): kinetic study and characterization[J]. J Appl Polym Sci, 2001, 82(11): 2651-2660. DOI: 10.1002/app.2118. [6] Wang S, Deng Y, Yang L, et al.Enhanced antibacterial property and osteo-differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano-topography[J]. J Biomater Sci Polym Ed, 2018, 29(5): 520-542. DOI: 10.1080/09205063.2018.1425181. [7] Porrelli D, Mardirossian M, Crapisi N, et al.Polyetheretherketone and titanium surface treatments to modify roughness and wettability-improvement of bioactivity and antibacterial properties[J]. J Mater Sci Technol, 2021, 95: 213-224. DOI: 10.1016/j.jmst.2021.04.023. [8] Sunarso, Tsuchiya A, Fukuda N, et al. Effect of micro-roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration[J]. J Biomater Sci Polym Ed, 2018,29(12):1375-1388. DOI: 10.1080/09205063.2018.1461448. [9] Wakelin EA, Yeo GC, McKenzie DR, et al. Plasma ion implantation enabled bio-functionalization of PEEK improves osteoblastic activity[J]. APL Bioeng, 2018,2(2):026109. DOI: 10.1063/1.5010346. [10] Mehdizadeh Omrani M, Kumar H, Mohamed M, et al.Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment[J]. J Biomed Mater Res B Appl Biomater, 2021,109(5):622-629. DOI: 10.1002/jbm.b.34726. [11] Chen CS, Chang JH, Srimaneepong V, et al.Improving the in vitro cell differentiation and in vivo osseointegration of titanium dental implant through oxygen plasma immersion ion implantation treatment[J]. Surf Coat Technol, 2020, 399: 126125. DOI: 10.1016/j.surfcoat.2020.126125. [12] Chen L, Bai M, Du R, et al.The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application[J]. J Biomater Sci Polym Ed, 2020,31(16):2152-2168. DOI: 10.1080/09205063.2020.1793706. [13] Han CM, Jang TS, Kim HE, et al.Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein[J]. J Biomed Mater Res A, 2014,102(3):793-800. DOI: 10.1002/jbm.a.34748. [14] Yu D, Guo S, Yu M, et al.Immunomodulation and osseointegration activities of Na2TiO3 nanorods-arrayed coatings doped with different Sr content[J]. Bioact Mater, 2021, 10: 323-334. DOI: 10.1016/j.matdes.2021.08.033. [15] Sun Y, Liu X, Tan J, et al. Strontium ranelate incorporated 3D porous sulfonated PEEK simulating MC3T3-E1 cell differentiation[J]. Regen Biomater, 2021,8(1):rbaa043. DOI: 10.1093/rb/rbaa043. [16] Liang CC, Xiong X, Cui R, et al.Reconstruction of surface porous PEEK decorated with strontium-doped calcium phosphate coatings for enhancing osteogenic activity[J]. J Bionic Eng, 2021, 18(4): 927-943. DOI: 10.1007/s42235-021-0060-9. [17] Zheng Z, Hu L, Ge Y, et al.Surface modification of poly(ether ether ketone) by simple chemical grafting of strontium chondroitin sulfate to improve its anti-inflammation, angiogenesis, osteogenic properties[J]. Adv Healthc Mater, 2022,11(13):e2200398. DOI: 10.1002/adhm.202200398. [18] Wang C, Lin K, Chang J, et al.Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials, 2013,34(1):64-77. DOI: 10.1016/j.biomaterials.2012.09.021. [19] Wang X, Guo JS, Wen J, et al.Novel vascular strategies on polyetheretherketone modification in promoting osseointegration in ovariectomized rats[J]. Mater Des, 2021, 202: 109526. DOI: 10.1016/j.matdes.2021.109526. [20] Rao NH, N L, Pammi SV, et al. Green synthesis of silver nanoparticles using methanolic root extracts of diospyros paniculata and their antimicrobial activities[J]. Mater Sci Eng C Mater Biol Appl, 2016,62:553-557. DOI: 10.1016/j.msec.2016.01.072. [21] Ishihama H, Ishii K, Nagai S, et al.An antibacterial coated polymer prevents biofilm formation and implant-associated infection[J]. Sci Rep, 2021,11(1):3602. DOI: 10.1038/s41598-021-82992-w. [22] Yu Y, Sun Y, Zhou X, et al.Ag and peptide co-decorate polyetheretherketone to enhance antibacterial property and osteogenic differentiation[J]. Colloids Surf B Biointerfaces, 2021,198:111492. DOI: 10.1016/j.colsurfb.2020.111492. [23] Kellesarian SV, Yunker M, Ramakrishnaiah R, et al.Does incorporating zinc in titanium implant surfaces influence osseointegration? A systematic review[J]. J Prosthet Dent, 2017,117(1):41-47. DOI: 10.1016/j.prosdent.2016.06.003. [24] Zhang Y, Wu H, Yuan B, et al.Enhanced osteogenic activity and antibacterial performance in vitro of polyetheretherketone by plasma-induced graft polymerization of acrylic acid and incorporation of zinc ions[J]. J Mater Chem B, 2021,9(36):7506-7515. DOI: 10.1039/d1tb01349a. [25] Manzoor F, Golbang A, Jindal S, et al.3D printed PEEK/HA composites for bone tissue engineering applications: effect of material formulation on mechanical performance and bioactive potential[J]. J Mech Behav Biomed Mater, 2021,121:104601. DOI: 10.1016/j.jmbbm.2021.104601. [26] Lu MM, Wu PS, Guo XJ, et al.Osteoinductive effects of tantalum and titanium on bone mesenchymal stromal cells and bone formation in ovariectomized rats[J]. Eur Rev Med Pharmacol Sci, 2018,22(21):7087-7104. DOI: 10.26355/eurrev_201811_16241. [27] Levine BR, Sporer S, Poggie RA, et al.Experimental and clinical performance of porous tantalum in orthopedic surgery[J]. Biomaterials, 2006,27(27):4671-4681. DOI: 10.1016/j.biomaterials.2006.04.041. [28] Luo S, Wang P, Ma M, et al.Genistein loaded into microporous surface of nano tantalum/PEEK composite with antibacterial effect regulating cellular response in vitro, and promoting osseointegration in vivo[J]. J Mech Behav Biomed Mater, 2022,125:104972. DOI: 10.1016/j.jmbbm.2021.104972. [29] Mei S, Yang L, Pan Y, et al.Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite[J]. Colloids Surf B Biointerfaces, 2019,174:207-215. DOI: 10.1016/j.colsurfb.2018.10.081. [30] 范宇恒, 唐努尔·布尔列斯, 吴梦婷, 等. 氟对成骨细胞骨钙素和Ⅰ型胶原基因表达的影响[J]. 疾病预防控制通报, 2022, 37(03): 9-13. DOI: 10.13215/j.cnki.jbyfkztb.2203055. [31] 乔艳春, 唐哲, 荣文笙, 等. 0.5%含氟涂料对龋高危儿童的防龋效果研究[J].北京口腔医学,2022,30(1): 35-39. [32] Chen M, Ouyang L, Lu T, et al.Enhanced bioactivity and bacteriostasis of surface fluorinated polyetheretherketone[J]. ACS Appl Mater Interfaces, 2017,9(20):16824-16833. DOI: 10.1021/acsami.7b02521. [33] Park JW, Kim YJ, Jang JH.Surface characteristics and in vitro biocompatibility of a manganese-containing titanium oxide surface[J]. Applied Surface Science, 2011, 258(2): 977-985. DOI: 10.1016/j.apsusc.2011.09.053. [34] Wang L, He HZ, Yang X, et al.Bimetallic ions regulated PEEK of bone implantation for antibacterial and osteogenic activities[J].Mater Today Adv, 2021, 12: 100162. DOI: 10.1016/j.mtadv.2021.100162. [35] Yang X, Chai H, Guo L, et al.In situ preparation of porous metal-organic frameworks ZIF-8@Ag on poly-ether-ether-ketone with synergistic antibacterial activity[J]. Colloids Surf B, 2021, 205: 111920. DOI: 10.1016/j.colsurfb.2021.111920. [36] Du M, He M, Zhu C, et al.Endowing conductive polyetheretherketone/graphene nanocomposite with bioactive and antibacterial coating through electrophoresis[J]. Macromol Mater Eng, 2022, 307(2): 2100646. DOI: 10.1002/mame.202100646. [37] Xiao T, Fan L, Liu R, et al.Fabrication of dexamethasone-loaded dual-metal-organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for promoting bone regeneration[J]. ACS Appl Mater Interfaces, 2021, 13(43): 50836-50850. DOI: 10.1021/acsami.1c18088. |
[1] | Zhou Yanmin, Qin Qiuyue. Clinical implications of 3-dimensional osteogenesis model for maxillary sinus to promote osteogenesis in maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 69-76. |
[2] | Yu Jiuyue, Jia Wenhao, Fang Li, Wang Jian, Li Jiangming, Liu Han, Guo Qili. Clinical analysis of extraction site preservation using Bio-Oss Collagen after extraction of maxillary molars [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 90-96. |
[3] | Li Xiaoyu, He Jie, Wang Xueke, Duan Jingyi, Ge Chang, Meng Weiyan. Application of Bio-Oss Collagen with tent pole procedure in vertical bone augmentation of edentulous maxillary posterior area: a case report [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 97-101. |
[4] | Zhou Yanmin, Zhu Yuemeng. Construction of the 3-dimensional osteogenesis model for maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 9-18. |
[5] | Cheng Wen, Ma Xiaoting, Shen Yajie, Lv Shouyin, Shao Bo. Research progress on nano-silver antibacterial materials in the application in oral implantology [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 40-46. |
[6] | Zhao Man, Zheng Yaqi, Yan Zhengbin, Li Xiaomin, Yang Xiaoyu. Implant failure caused by mandible fibro-osseous lesions: a case report and the literature review [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 346-351. |
[7] | Gu Teng, Wang Xuran, Wang Penglai. Research progress on the modification of polyetheretherketone for implant applications [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 371-375. |
[8] | Chen Jiang. Application of robots in the field of dental implantology [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 274-279. |
[9] | Zhang Qihang, Gong Jiaming, Gou Ping, Yu Jiaying, Bo Lei, Yu Zhanhai. A meta-analysis of interimplant distance on peri-implant bone resorption [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 304-311. |
[10] | Teng Weiwei, Su Tianyue, Wang Qi, Shu Qianyi, Zhou Libo, Hou Yuze. Current status of the use of polyurethane artificial bone in vitro studies of dental implants [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 312-316. |
[11] | Qian Yinjie, Si Misi. Progress in the study of sandblasted large-grit acid-etched hydrophilic surface implants to promote osseointegration in areas of bone defects [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 317-321. |
[12] | Yang Dezhao, Xu Yingjie, Tang Zhengting, Ma Yuxiao, Li Guangcheng, Meng Fanwen. Application of lag screw technique in alveolar bone block grafting [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 217-223. |
[13] | Ma Yuxiao, Zhou Libo, Meng Fanwen, Yang Dezhao, Wang Zhaoyun, Duan Feng. Comparison of implantation accuracy of four implantation methods in the posterior region of mandible: an in vitro study [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 229-237. |
[14] | Zhang Ruiyuan, Zhong Weijian, Ma Guowu. Research progress of socket-shield technique in immediate implantation [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 238-242. |
[15] | Su Tianyue, Teng Weiwei, Wang Qi, Shu Qianyi, Zhou Libo. Progress in evaluation methods of dental implant placement accuracy [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 248-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||