Chinese Journal of Oral Implantology ›› 2022, Vol. 27 ›› Issue (6): 371-375.DOI: 10.12337/zgkqzzxzz.2022.12.008
• Reviews • Previous Articles Next Articles
Gu Teng, Wang Xuran, Wang Penglai
Received:
2022-10-10
Online:
2022-12-30
Published:
2023-01-03
Contact:
Wang Penglai, Email: wpl0771@163.com, Tel: 0086-516-85645181
Gu Teng, Wang Xuran, Wang Penglai. Research progress on the modification of polyetheretherketone for implant applications[J]. Chinese Journal of Oral Implantology, 2022, 27(6): 371-375.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2022.12.008
[1] Brånemark PI, Adell R, Breine U, et al.Intra-osseous anchorage of dental prostheses. I. Experimental studies[J]. Scand J Plast Reconstr Surg, 1969,3(2):81-100. DOI: 10.3109/02844316909036699. [2] Yamaguchi H, Takahashi M, Sasaki K, et al.Mechanical properties and microstructures of cast dental Ti-Fe alloys[J]. Dent Mater J, 2021,40(1):61-67. DOI: 10.4012/dmj.2019-254. [3] Lee WT, Koak JY, Lim YJ, et al.Stress shielding and fatigue limits of poly- ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012,100(4):1044-1052. DOI: 10.1002/jbm.b.32669. [4] Lee WT, Koak JY, Lim YJ, et al.Stress shielding and fatigue limits of poly- ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012,100(4):1044-1052. DOI: 10.1002/jbm.b.32669. [5] Huiskes R, Ruimerman R, van Lenthe GH, et al. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone[J]. Nature, 2000,405(6787): 704-706. DOI: 10.1038/35015116. [6] Eschbach L. Nonresorbable polymers in bone surgery[J]. Injury, 2000,31 Suppl 4:22-27. DOI: 10.1016/s0020-1383(00)80019-4. [7] Ouyang L, Zhao Y, Jin G, et al.Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK[J]. Biomaterials, 2016,83:115-126. DOI: 10.1016/j.biomaterials.2016.01.017. [8] Buck E, Li H, Cerruti M.Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites[J]. Macromol Biosci, 2020,20(2):e1900271. DOI: 10.1002/mabi.201900271. [9] Rahmitasari F, Ishida Y, Kurahashi K, et al.PEEK with reinforced materials and modifications for dental implant applications[J]. Dent J (Basel), 2017,5(4):35.DOI: 10.3390/dj5040035. [10] Dua R, Rashad Z, Spears J, et al.Applications of 3D-printed PEEK via fused filament fabrication: a systematic review[J]. Polymers (Basel), 2021,13(22): 4046. DOI: 10.3390/polym13224046. [11] Sakoda H, Uematsu M, Okamoto Y, et al.In vitro evaluation of delamination resistance of PEEK and CFR-PEEK[J]. Proc Inst Mech Eng H, 2022,236(2):279-285. DOI: 10.1177/09544119211042992. [12] Peng TY, Shih YH, Hsia SM, et al.In vitro assessment of the cell metabolic activity, cytotoxicity,cell attachment, and inflammatory reaction of human oral fibroblasts on polyetheretherketone (PEEK) implant-abutment[J]. Polymers (Basel), 2021,13(17):2995.DOI: 10.3390/polym13172995. [13] Lee WT, Koak JY, Lim YJ, et al.Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012,100(4):1044-1052. DOI: 10.1002/jbm.b.32669. [14] Panayotov IV, Orti V, Cuisinier F, et al.Polyetheretherketone (PEEK) for medical applications[J]. J Mater Sci Mater Med, 2016,27(7):118. DOI: 10.1007/s10856-016- 5731-4. [15] Ma R, Tang T.Current strategies to improve the bioactivity of PEEK[J]. Int J Mol Sci, 2014,15(4):5426-5445. DOI: 10.3390/ijms15045426. [16] 崔晶晶, 李启期, 魏杰, 等. 喷砂对纳米氟磷灰石聚醚醚酮种植体骨结合影响的实验研究[J].口腔颌面外科杂志, 2014, 24(1):16-20. DOI: 10.3969/j.issn.1005- 4979. 2014.01.004. [17] Xu A, Liu X, Gao X, et al.Enhancement of osteogenesis on micro/nano- topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite[J]. Mater Sci Eng C Mater Biol Appl, 2015,48:592-598. DOI: 10.1016/ j.msec.2014.12.061. [18] Fu Q, Gabriel M, Schmidt F, et al.The impact of different low-pressure plasma types on the physical, chemical and biological surface properties of PEEK[J]. Dent Mater, 2021,37(1):e15-e22. DOI: 10.1016/j.dental.2020.09.020. [19] Waser-Althaus J, Salamon A, Waser M, et al.Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone[J]. J Mater Sci Mater Med, 2014,25(2):515-525. DOI: 10.1007/s10856-013-5072-5. [20] 肖天华, 刘荣涛, 庞贻宇, 等. 骨植入聚醚醚酮材料表面改性的研究进展[J].广东工业大学学报,2021,38(2):73-82. DOI: 10.12052/gdutxb.200118. [21] Yu X, Ibrahim M, Liu Z, et al.Biofunctional Mg coating on PEEK for improving bioactivity[J]. Bioact Mater, 2018,3(2):139-143. DOI: 10.1016/j.bioactmat.2018.01. 007. [22] Preischl C, Le LH, Bilgilisoy E, et al.Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing[J]. Beilstein J Nanotechnol, 2021,12:319-329. DOI: 10.3762/bjnano.12.26. [23] Han CM, Lee EJ, Kim HE, et al.The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties[J]. Biomaterials, 2010,31(13):3465-3470. DOI: 10.1016/j.biomaterials.2009.12.030. [24] Han CM, Jang TS, Kim HE, et al.Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein[J]. J Biomed Mater Res A, 2014,102(3):793-800. DOI: 10.1002/jbm.a.34748. [25] Ma R, Wang J, Li C, et al.Effects of different sulfonation times and post- treatment methods on the characterization and cytocompatibility of sulfonated PEEK[J]. J Biomater Appl, 2020,35(3):342-352. DOI: 10.1177/0885328220935008. [26] Yang C, Ouyang L, Wang W, et al.Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections[J]. J Mater Chem B, 2019,7(36):5541-5553. DOI: 10.1039/c9tb01298b. [27] Yuan Z, Long T, Zhang J, et al.3D printed porous sulfonated polyetheretherketone scaffold for cartilage repair: potential and limitation[J]. J Orthop Translat, 2022,33:90-106. DOI: 10.1016/j.jot.2022.02.005. [28] Loozen LD, Kruyt MC, Kragten A, et al.BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration[J]. PLoS One, 2019,14(7):e0220028. DOI: 10.1371/journal.pone.0220028. [29] Wang S, Yang Y, Li Y, et al.Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant[J]. Colloids Surf B Biointerfaces, 2019,176:38-46. DOI: 10.1016/j.colsurfb.2018.12.056. [30] 余和东, 陈永吉, 毛敏, 等. 聚醚醚酮/双相生物陶瓷复合材料包裹血管内皮生长因子修复下颌骨缺损[J].中国组织工程研究,2019,23(2):184-189. DOI: 10.3969/j.issn. 2095-4344.1505. [31] Ding R, Chen T, Xu Q, et al.Mixed modification of the surface microstructure and chemical state of polyetheretherketone to improve its antimicrobial activity, hydrophilicity, cell adhesion, and bone integration[J]. ACS Biomater Sci Eng, 2020,6(2):842-851. DOI: 10.1021/acsbiomaterials.9b01148. [32] Hassan E, Elagib T, Memon H, et al.Surface modification of carbon fibers by grafting PEEK-NH2 for improving interfacial adhesion with polyetheretherketone[J]. Materials (Basel), 2019,12(5):778.DOI: 10.3390/ma12050778. [33] Eliaz N, Metoki N.Calcium Phosphate Bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials (Basel), 2017,10(4):334.DOI: 10.3390/ma10040334. [34] Oyane A, Nakamura M, Sakamaki I, et al.Laser-assisted wet coating of calcium phosphate for surface-functionalization of PEEK[J]. PLoS One, 2018,13(10): e0206524. DOI: 10.1371/journal.pone.0206524. [35] Sunarso, Tsuchiya A, Toita R, et al. Enhanced osseointegration capability of poly(ether ether ketone) via combined phosphate and calcium surface- functionalization[J]. Int J Mol Sci, 2019,21(1):198.DOI: 10.3390/ijms21010198. [36] Ouyang L, Deng Y, Yang L, et al.Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant[J]. Macromol Biosci, 2018,18(6):e1800036. DOI: 10.1002/ mabi.201800036. [37] Yan JH, Wang CH, Li KW, et al.Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification[J]. 2018,13:3425-3440. [38] Cheng BC, Koduri S, Wing CA, et al.Porous titanium-coated polyetheretherketone implants exhibit an improved bone-implant interface: an in vitro and in vivo biochemical, biomechanical, and histological study[J]. Med Devices (Auckl), 2018,11:391-402. DOI: 10.2147/MDER.S180482. [39] Günzel R,Brutscher J.Sheath dynamics in plasma immersion ion implantation[J]. Surface and Coatings Technology,1996,85:98-104.DOI:10.1016/0257 -8972(96) 02883-6. [40] Wakelin EA, Yeo GC, McKenzie DR, et al. Plasma ion implantation enabled bio-functionalization of PEEK improves osteoblastic activity[J]. APL Bioeng, 2018,2(2):026109. DOI: 10.1063/1.5010346. [41] Wang H, Lu T, Meng F, et al.Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation[J]. Colloids Surf B Biointerfaces, 2014,117:89-97. DOI: 10.1016/j.colsurfb.2014.02.019. [42] Tsou HK, Hsieh PY, Chung CJ, et al.Low-temperature deposition of anatase TiO2 on medical grade polyetheretherketone to assist osseous integration[J].Surf Coat Technol,2009,204(6/7):1121-1125.DOI:10.1016/j.surfcoat.2009.06.018. [43] Thanigachalam M, Muthusamy Subramanian AV.Evaluation of PEEK-TiO(2)- SiO(2) nanocomposite as biomedical implants with regard to in-vitro biocompatibility and material characterization[J]. J Biomater Sci Polym Ed, 2022,33(6):727-746. DOI: 10.1080/09205063.2021.2014028. [44] Le Guéhennec L, Soueidan A, Layrolle P, et al.Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007,23(7):844-854. DOI: 10.1016/j.dental.2006.06.025. [45] Ma R, Guo D.Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite[J]. J Orthop Surg Res, 2019,14(1):32. DOI: 10.1186/s13018-019-1069-1. [46] Prasher P, Singh M, Mudila H.Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges[J]. 3 Biotech, 2018,8(10):411. DOI: 10.1007/s13205-018-1436-3. [47] Jiang J, You D, Wang Q, et al.Novel fabrication and biological characterizations of AgNPs-decorated PEEK with gelatin functional nanocomposite to improve superior biomedical applications[J]. J Biomater Sci Polym Ed, 2022,33(5):590-604. DOI: 10.1080/09205063.2021.2004632. |
[1] | Zhou Yanmin, Qin Qiuyue. Clinical implications of 3-dimensional osteogenesis model for maxillary sinus to promote osteogenesis in maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 69-76. |
[2] | Yu Jiuyue, Jia Wenhao, Fang Li, Wang Jian, Li Jiangming, Liu Han, Guo Qili. Clinical analysis of extraction site preservation using Bio-Oss Collagen after extraction of maxillary molars [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 90-96. |
[3] | Li Xiaoyu, He Jie, Wang Xueke, Duan Jingyi, Ge Chang, Meng Weiyan. Application of Bio-Oss Collagen with tent pole procedure in vertical bone augmentation of edentulous maxillary posterior area: a case report [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 97-101. |
[4] | Luo Guisheng, Liu Yumeng, Wang Penglai, Yuan Changyong. Research progress on trace elements modification of PEEK implant [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 109-113. |
[5] | Liu Quan, Chen Jieyin, Liu Meixiu, Chen Zhuofan. Combined use of computer-assisted dynamic navigation and socket shield technique in immediate implant placement [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 124-127. |
[6] | Zhou Yanmin, Zhu Yuemeng. Construction of the 3-dimensional osteogenesis model for maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 9-18. |
[7] | Zheng Jiabao, Gao Wenmo, Zuo Xiaoyun, Yang Bo, Luo Chenchen, Chen Ming. Influence of creating food escape grooves adjacent to marginal ridge on the perception of food impaction in implant-supported fixed prosthesis [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 26-29. |
[8] | Chen Danying, Wu Xiayi, Liu Quan, Chen Zhuofan. Custom impression techniques of multi-unit implant-supported prosthesis in aesthetic zone [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 30-34. |
[9] | Liu Yue, Zhao Yajun, Liu Jin, Du Mi, Lan Jing. Characterization of peri-implant microbes and their changes under diseased conditions [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 35-39. |
[10] | Cheng Wen, Ma Xiaoting, Shen Yajie, Lv Shouyin, Shao Bo. Research progress on nano-silver antibacterial materials in the application in oral implantology [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 40-46. |
[11] | Xu Yifan, Ye Ying. The influence of anatomical characteristics of the alveolar bone on the outcome of guided bone regeneration in the aesthetic zone [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 47-52. |
[12] | Shi Wen, Wang Miaozhen, Liu Feng. A case of teeth extraction and immediate implants with the application of ridge splitting technique in anterior mandibular alveolar ridge [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 340-345. |
[13] | Zhao Man, Zheng Yaqi, Yan Zhengbin, Li Xiaomin, Yang Xiaoyu. Implant failure caused by mandible fibro-osseous lesions: a case report and the literature review [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 346-351. |
[14] | Yang Yufei, Gu Xinhua. Biological principle of emergence profile design of implant prosthesis [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 352-357. |
[15] | Zhao Yaoyu, Yan Qi, Shi Bin. Application of socket-shield technique for immediate implant placement in aesthetic area [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 376-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||