Chinese Journal of Oral Implantology ›› 2025, Vol. 30 ›› Issue (3): 305-311.DOI: 10.12337/zgkqzzxzz.2025.06.016
• Reviews • Previous Articles Next Articles
Ding Jiaqi1, Zhou Wenjuan1,2,3
Received:
2025-03-17
Published:
2025-06-27
Contact:
Zhou Wenjuan, Email: Supported by:
Ding Jiaqi, Zhou Wenjuan. Research progress on the role and mechanism of the Wnt/Ca2+/CaMKⅡsignaling pathway in osteogenic regulation and diabetic bone metabolism disorders[J]. Chinese Journal of Oral Implantology, 2025, 30(3): 305-311.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2025.06.016
[1] Qin Q, Lee S, Patel N, et al.Neurovascular coupling in bone regeneration[J]. Exp Mol Med, 2022,54(11):1844-1849. DOI: 10.1038/s12276-022-00899-6. [2] Zhou M, An YZ, Guo Q, et al.Energy homeostasis in the bone[J]. Trends Endocrinol Metab, 2024,35(5):439-451. DOI: 10.1016/j.tem.2023.12.009. [3] Morgan EF, Unnikrisnan GU, Hussein AI.Bone mechanical properties in healthy and diseased states[J]. Annu Rev Biomed Eng, 2018,20:119-143. DOI: 10.1146/annurev-bioeng-062117-121139. [4] Gao Q, Jiang Y, Zhou D, et al.Advanced glycation end products mediate biomineralization disorder in diabetic bone disease[J]. Cell Rep Med, 2024,5(9):101694. DOI: 10.1016/j.xcrm.2024.101694. [5] Leanza G, Cannata F, Faraj M, et al. Bone canonical wnt signaling is downregulated in type 2 diabetes and associates with higher advanced glycation end-products (AGEs) content and reduced bone strength[J]. Elife, 2024,12:RP90437. DOI: 10.7554/eLife.90437. [6] Lee WC, Guntur AR, Long F, et al.Energy metabolism of the osteoblast: implications for osteoporosis[J]. Endocr Rev, 2017,38(3):255-266. DOI: 10.1210/er.2017-00064. [7] Baeza M, Morales A, Cisterna C, et al.Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis[J]. J Appl Oral Sci, 2020,28:e20190248. DOI: 10.1590/1678-7757-2019-0248. [8] Sun Y, Zhu Y, Liu X, et al.Morroniside attenuates high glucose-induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis[J]. Cell Prolif, 2020,53(8):e12866. DOI: 10.1111/cpr.12866. [9] Holzem M, Boutros M, Holstein TW.The origin and evolution of Wnt signalling[J]. Nat Rev Genet, 2024,25(7):500-512. DOI: 10.1038/s41576-024-00699-w. [10] Hu L, Chen W, Qian A, et al.Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease[J]. Bone Res, 2024,12(1):39. DOI: 10.1038/s41413-024-00342-8. [11] Lin S, Pandruvada S, Yu H.Inhibition of sphingosine-1-phosphate receptor 2 by JTE013 promoted osteogenesis by increasing vesicle trafficking, Wnt/Ca2+, and BMP/Smad signaling[J]. Int J Mol Sci, 2021,22(21):12060. DOI: 10.3390/ijms222112060. [12] Rui S, Kubota T, Ohata Y, et al.Phosphate promotes osteogenic differentiation through non-canonical Wnt signaling pathway in human mesenchymal stem cells[J]. Bone, 2022,164:116525. DOI: 10.1016/j.bone.2022.116525. [13] Li J, Liu C, Li Y, et al.TMCO1-mediated Ca2+ leak underlies osteoblast functions via CaMKII signaling[J]. Nat Commun, 2019,10(1):1589. DOI: 10.1038/s41467-019-09653-5. [14] Tan Z, Ding N, Lu H, et al.Wnt signaling in physiological and pathological bone formation[J]. Histol Histopathol, 2019,34(4):303-312. DOI: 10.14670/HH-18-062. [15] Zhuang X, Zhang H, Li X, et al.Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1[J]. Nat Cell Biol, 2017,19(10):1274-1285. DOI: 10.1038/ncb3613. [16] Lojk J, Marc J.Roles of non-canonical Wnt signalling pathways in bone biology[J]. Int J Mol Sci, 2021,22(19):10840. DOI: 10.3390/ijms221910840. [17] Delgado-Calle J, Bellido T.The osteocyte as a signaling cell[J]. Physiol Rev, 2022,102(1):379-410. DOI: 10.1152/physrev.00043.2020. [18] Bakkalci D, Micalet A, Al Hosni R, et al.Associated changes in stiffness of collagen scaffolds during osteoblast mineralisation and bone formation[J]. BMC Res Notes, 2022,15(1):310. DOI: 10.1186/s13104-022-06203-z. [19] Zheng L, Zhou D, Ju F, et al.Oscillating fluid flow activated osteocyte lysate-based hydrogel for regulating osteoblast/osteoclast homeostasis to enhance bone repair[J]. Adv Sci (Weinh), 2023,10(15):e2204592. DOI: 10.1002/advs.202204592. [20] Maeda K, Kobayashi Y, Koide M, et al.The regulation of bone metabolism and disorders by Wnt signaling[J]. Int J Mol Sci, 2019,20(22):5525. DOI: 10.3390/ijms20225525. [21] Park H, Jo S, Jang MA, et al.Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A-CREB1 pathway[J]. BMB Rep, 2022,55(12):627-632. DOI: 10.5483/BMBRep.2022.55.12.103. [22] Li J, Liu C, Li Y, et al.Tmco1-mediated Ca2+ leak underlies osteoblast functions via CaMKII signaling[J]. Nat Commun, 2019,10(1):1589. DOI: 10.1038/s41467-019-09653-5. [23] Robinson LJ, Blair HC, Barnett JB, et al.The roles of Orai and Stim in bone health and disease[J]. Cell Calcium, 2019,81:51-58. DOI: 10.1016/j.ceca.2019.06.001. [24] Xie Y, Bao Z, Wang Z, et al.Magnesium ascorbyl phosphate promotes bone formation via CaMKII signaling[J]. J Bone Miner Res, 2023,38(7):1015-1031. DOI: 10.1002/jbmr.4820. [25] Leser JM, Torre OM, Gould NR, et al.Osteoblast-lineage calcium/calmodulin-dependent kinase 2 delta and gamma regulates bone mass and quality[J]. Proc Natl Acad Sci U S A, 2023,120(47):e2304492120. DOI: 10.1073/pnas.2304492120. [26] Qin K, Yu M, Fan J, et al.Canonical and noncanonical Wnt signaling: multilayered mediators, signaling mechanisms and major signaling crosstalk[J]. Genes Dis, 2024,11(1):103-134. DOI: 10.1016/j.gendis.2023.01.030. [27] You C, Shen F, Yang P, et al.O-glcnacylation mediates Wnt-stimulated bone formation by rewiring aerobic glycolysis[J]. EMBO Rep, 2024,25(10):4465-4487. DOI: 10.1038/s44319-024-00237-z. [28] Emam SM, Moussa N.Signaling pathways of dental implants' osseointegration: a narrative review on two of the most relevant; NF-κB and Wnt pathways[J]. BDJ Open, 2024,10(1):29. DOI: 10.1038/s41405-024-00211-w. [29] Li J, Yin X, Huang L, et al.Relationships among bone quality, implant osseointegration, and Wnt signaling[J]. J Dent Res, 2017,96(7):822-831. DOI: 10.1177/0022034517700131. [30] Lao A, Wu J, Li D, et al.Functionalized metal-organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J]. Small, 2023,19(36):e2206919. DOI: 10.1002/smll.202206919. [31] Sun J, Wei N, Yu C, et al.Natural polysaccharides: the potential biomacromolecules for treating diabetes and its complications via AGEs-RAGE-oxidative stress axis[J]. Int Immunopharmacol, 2024,143(Pt 2):113426. DOI: 10.1016/j.intimp.2024.113426. [32] Shu H, Peng Y, Hang W, et al.The role of CD36 in cardiovascular disease[J]. Cardiovasc Res, 2022,118(1):115-129. DOI: 10.1093/cvr/cvaa319. [33] Rui S, Dai L, Zhang X, et al.Exosomal miRNA-26b-5p from PRP suppresses NETs by targeting MMP-8 to promote diabetic wound healing[J]. J Control Release, 2024,372:221-233. DOI: 10.1016/j.jconrel.2024.06.050. [34] Zhu S, Bennett S, Kuek V, et al.Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms[J]. Theranostics, 2020,10(13):5957-5965. DOI: 10.7150/thno.45422. [35] LaMoia TE, Hubbard BT, Guerra MT, et al. Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis,gluconeogenesis via CaMKII activation[J]. Cell Metab, 2024,36(10):2329-2340.e4. DOI: 10.1016/j.cmet.2024.07.016. [36] Benchoula K, Mediani A, Hwa WE.The functions of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in diabetes progression[J]. J Cell Commun Signal, 2023,17(1):25-34. DOI: 10.1007/s12079-022-00680-4. [37] Wang B, Shao W, Zhao Y, et al.Radial extracorporeal shockwave promotes osteogenesis-angiogenesis coupling of bone marrow stromal cells from senile osteoporosis via activating the Piezo1/CaMKII/CREB axis[J]. Bone, 2024,187:117196. DOI: 10.1016/j.bone.2024.117196. [38] Xie Y, Bao Z, Wang Z, et al.Magnesium ascorbyl phosphate promotes bone formation via CaMKII signaling[J]. J Bone Miner Res, 2023,38(7):1015-1031. DOI: 10.1002/jbmr.4820. [39] Yepuri G, Hasan SN, Kumar V, et al.Mechanistic underpinnings of AGEs-RAGE via DIAPH1 in ischemic, diabetic, and failing hearts[J]. Am J Physiol Heart Circ Physiol, 2025. DOI: 10.1152/ajpheart.00685.2024.[published online ahead of print]. [40] Wang F, Kong L, Wang W, et al.Adrenomedullin 2 improves bone regeneration in type 1 diabetic rats by restoring imbalanced macrophage polarization and impaired osteogenesis[J]. Stem Cell Res Ther, 2021,12(1):288. DOI: 10.1186/s13287-021-02368-9. [41] Lee YH, Kim JS, Kim JE, et al.Nanoparticle mediated PPARγ gene delivery on dental implants improves osseointegration via mitochondrial biogenesis in diabetes mellitus rat model[J]. Nanomedicine, 2017,13(5):1821-1832. DOI: 10.1016/j.nano.2017.02.020. [42] Inchingolo AD, Inchingolo AM, Malcangi G, et al.Effects of resveratrol, curcumin and quercetin supplementation on bone metabolism-a systematic review[J]. Nutrients, 2022,14(17):3519. DOI: 10.3390/nu14173519. |
[1] | Wang Ziyang, Ma Xudong. Research progress on the effects of osteoblast/osteoclast axis on bone metabolism in diabetes mellitus [J]. Chinese Journal of Oral Implantology, 2025, 30(2): 176-179. |
[2] | Zhou Wenjie, Wu Yiqun. Feasibility of implant placement during the early healing phase following lateral window technique for sinus floor elevation: a prospective controlled clinical trial [J]. Chinese Journal of Oral Implantology, 2024, 29(6): 524-530. |
[3] | Zhao Guoqiang, Song Yingliang. Animal experiment of prognosis of immediate implant placement and restoration in individuals with T2DM [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 311-319. |
[4] | Zhao Xintong, Meng Weiyan. Research progress on the influence of depression on peri-implant health [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 342-346. |
[5] | Wang Qian, Yuan Quan. The impact of diabetes on the soft tissue seal surrounding dental implants [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 347-351. |
[6] | Chinese Society of Oral Implantology. Expert consensus on maxillary sinus floor elevation: maxillary sinus septum [J]. Chinese Journal of Oral Implantology, 2024, 29(2): 103-108. |
[7] | Lin Qian, Han Zekui, Song Zhenyu, Che Di, Duan Feng, Wang Xinyu. SLA-processed 3D printing and forging of TC4 surface implants in an animal model of hyperglycemia [J]. Chinese Journal of Oral Implantology, 2023, 28(5): 332-339. |
[8] | Tian Cong, Zhou Liwei, Li Mengquan. Progress of implant treatment for patients with type III and IV osteogenesis imperfecta [J]. Chinese Journal of Oral Implantology, 2023, 28(5): 371-376. |
[9] | Zhou Yanmin, Qin Qiuyue. Clinical implications of 3-dimensional osteogenesis model for maxillary sinus to promote osteogenesis in maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 69-76. |
[10] | Deng Lei, Huang Haitao. Progress in the study of osteogenesis after maxillary sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 53-57. |
[11] | Wu Yuepen, Gu Xinhua. A review of bone augmentation materials in maxillary sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2021, 26(4): 258-263. |
[12] | Lv Lingfeng, Wu Dong. Research progress on surface properties of titanium anodizing [J]. Chinese Journal of Oral Implantology, 2021, 26(3): 202-205. |
[13] | LIN Zhenxiang, PAN Zaixing, ZHOU Jinyang, et al. Imageological analysis of immediate implant healing in patients with type 2 diabetes mellitus [J]. Chinese Journal of Oral Implantology, 2020, 25(3): 112-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||