Chinese Journal of Oral Implantology ›› 2022, Vol. 27 ›› Issue (5): 317-321.DOI: 10.12337/zgkqzzxzz.2022.10.010
• Reviews • Previous Articles Next Articles
Qian Yinjie, Si Misi
Received:
2022-08-14
Online:
2022-10-30
Published:
2022-11-01
Contact:
Si Misi, Email: misi_si@zju.edu.cn, Tel:0086-571-87217419
Supported by:
Qian Yinjie, Si Misi. Progress in the study of sandblasted large-grit acid-etched hydrophilic surface implants to promote osseointegration in areas of bone defects[J]. Chinese Journal of Oral Implantology, 2022, 27(5): 317-321.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2022.10.010
[1] Omori Y, Botticelli D, Ferri M, et al.Argon bioactivation of implants installed simultaneously to maxillary sinus lifting without graft. An experimental study in rabbits[J]. Dent J (Basel), 2021,9(9):105.DOI: 10.3390/dj9090105. [2] Milleret V, Tugulu S, Schlottig F, et al.Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation[J]. Eur Cell Mater, 2011,21:430-444. DOI: 10.22203/ecm.v021a32. [3] Funato A, Yamada M, Ogawa T.Success rate, healing time, and implant stability of photofunctionalized dental implants[J]. Int J Oral Maxillofac Implants, 2013,28(5):1261-1271. DOI: 10.11607/jomi.3263. [4] Zhao G, Schwartz Z, Wieland M, et al.High surface energy enhances cell response to titanium substrate microstructure[J]. J Biomed Mater Res A, 2005,74(1):49-58. DOI: 10.1002/jbm.a.30320. [5] Schwarz F, Wieland M, Schwartz Z, et al.Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants[J]. J Biomed Mater Res B Appl Biomater, 2009,88(2):544-557. DOI: 10.1002/jbm.b.31233. [6] Buser D, Broggini N, Wieland M, et al.Enhanced bone apposition to a chemically modified SLA titanium surface[J]. J Dent Res, 2004,83(7):529-533. DOI: 10.1177/154405910408300704. [7] Wennerberg A, Svanborg LM, Berner S, et al.Spontaneously formed nanostructures on titanium surfaces[J]. Clin Oral Implants Res, 2013,24(2):203-209. DOI: 10.1111/j.1600-0501.2012.02429.x. [8] Wennerberg A, Jimbo R, Stübinger S, et al.Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia[J]. Clin Oral Implants Res, 2014,25(9):1041-1050. DOI: 10.1111/clr.12213. [9] Lee J, Yoo JM, Amara HB, et al.Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs[J]. J Periodontal Implant Sci, 2019,49(1):25-38. DOI: 10.5051/jpis.2019.49.1.25. [10] Offermanns V, Andersen OZ, Sillassen M, et al.A comparative in vivo study of strontium-functionalized and SLActive™ implant surfaces in early bone healing[J]. Int J Nanomedicine, 2018,13:2189-2197. DOI: 10.2147/IJN.S161061. [11] Wennerberg A, Jimbo R, Stübinger S, et al.Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia[J]. Clin Oral Implants Res, 2014,25(9):1041-1050. DOI: 10.1111/clr.12213. [12] Favero V, Lang NP, Rossi F, et al.Peri-implant tissues morphometry at SLActive surfaces. An experimental study in the dog[J]. Clin Oral Implants Res, 2016,27(8):993-998. DOI: 10.1111/clr.12719. [13] Ganeles J, Zöllner A, Jackowski J, et al.Immediate and early loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study[J]. Clin Oral Implants Res, 2008,19(11):1119-1128. DOI: 10.1111/j.1600-0501.2008.01626.x. [14] Zöllner A, Ganeles J, Korostoff J, et al.Immediate and early non-occlusal loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: interim results from a prospective multicenter randomized-controlled study[J]. Clin Oral Implants Res, 2008,19(5):442-450. DOI: 10.1111/j.1600-0501.2007.01517.x. [15] Nicolau P, Korostoff J, Ganeles J, et al.Immediate and early loading of chemically modified implants in posterior jaws: 3-year results from a prospective randomized multicenter study[J]. Clin Implant Dent Relat Res, 2013,15(4):600-612. DOI: 10.1111/j.1708-8208.2011.00418.x. [16] Nicolau P, Guerra F, Reis R, et al.10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface[J]. Quintessence Int, 2019,50(2):114-124. DOI: 10.3290/j.qi.a41664. [17] Makowiecki A, Hadzik J, Błaszczyszyn A, et al.An evaluation of superhydrophilic surfaces of dental implants - a systematic review and meta-analysis[J]. BMC Oral Health, 2019,19(1):79. DOI: 10.1186/s12903-019-0767-8. [18] Raghoebar GM, Onclin P, Boven GC, et al. Long-term effectiveness of maxillary sinus floor augmentation: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019,46 Suppl 21:307-318. DOI: 10.1111/jcpe.13055. [19] Boyne PJ, James RA.Grafting of the maxillary sinus floor with autogenous marrow and bone[J]. J Oral Surg, 1980,38(8):613-616. [20] Tatum H Jr.Maxillary and sinus implant reconstructions[J]. Dent Clin North Am, 1986,30(2):207-229. [21] Summers RB. A new concept in maxillary implant surgery: the osteotome technique[J]. Compendium, 1994,15(2):152, 154-156, 158 passim; quiz 162. [22] Alayan J, Vaquette C, Saifzadeh S, et al.Comparison of early osseointegration of SLA(®) and SLActive(®) implants in maxillary sinus augmentation: a pilot study[J]. Clin Oral Implants Res, 2017,28(11):1325-1333. DOI: 10.1111/clr.12988. [23] Philipp A, Duncan W, Roos M, et al.Comparison of SLA® or SLActive® implants placed in the maxillary sinus with or without synthetic bone graft materials--an animal study in sheep[J]. Clin Oral Implants Res, 2014,25(10):1142-1148. DOI: 10.1111/clr.12255. [24] Leocádio A, Silva M Jr, de Oliveira G, et al. Osseointegration of different implant surfaces in areas grafted with deproteinized bovine bone associated or not with fresh bone marrow-Preclinical study in rabbits[J]. Clin Oral Implants Res, 2021,32(6):767-775. DOI: 10.1111/clr.13746. [25] Qian SJ, Mo JJ, Shi JY, et al.Endo-sinus bone formation after transalveolar sinus floor elevation without grafting with simultaneous implant placement: Histological and histomorphometric assessment in a dog model[J]. J Clin Periodontol, 2018,45(9):1118-1127. DOI: 10.1111/jcpe.12975. [26] Kuchler U, Chappuis V, Bornstein MM, et al.Development of implant stability quotient values of implants placed with simultaneous sinus floor elevation - results of a prospective study with 109 implants[J]. Clin Oral Implants Res, 2017,28(1):109-115. DOI: 10.1111/clr.12768. [27] Nedir R, Nurdin N, Khoury P, et al.Osteotome sinus floor elevation with and without grafting material in the severely atrophic maxilla. A 1-year prospective randomized controlled study[J]. Clin Oral Implants Res, 2013,24(11):1257-1264. DOI: 10.1111/j.1600-0501.2012.02569.x. [28] Braut V, Bornstein MM, Belser U, et al.Thickness of the anterior maxillary facial bone wall-a retrospective radiographic study using cone beam computed tomography[J]. Int J Periodontics Restorative Dent, 2011,31(2):125-131. [29] Januário AL, Duarte WR, Barriviera M, et al.Dimension of the facial bone wall in the anterior maxilla: a cone-beam computed tomography study[J]. Clin Oral Implants Res, 2011,22(10):1168-1171. DOI: 10.1111/j.1600-0501.2010.02086.x. [30] Araújo MG, Lindhe J.Dimensional ridge alterations following tooth extraction. An experimental study in the dog[J]. J Clin Periodontol, 2005,32(2):212-218. DOI: 10.1111/j.1600-051X.2005.00642.x. [31] Buser D, Chappuis V, Kuchler U, et al.Long-term stability of early implant placement with contour augmentation[J]. J Dent Res, 2013,92(12 Suppl):176S-182S. DOI: 10.1177/0022034513504949. [32] Buser D, Halbritter S, Hart C, et al.Early implant placement with simultaneous guided bone regeneration following single-tooth extraction in the esthetic zone: 12-month results of a prospective study with 20 consecutive patients[J]. J Periodontol, 2009,80(1):152-162. DOI: 10.1902/jop.2009.080360. [33] Buser D, Wittneben J, Bornstein MM, et al.Stability of contour augmentation and esthetic outcomes of implant-supported single crowns in the esthetic zone: 3-year results of a prospective study with early implant placement postextraction[J]. J Periodontol, 2011,82(3):342-349. DOI: 10.1902/jop.2010.100408. [34] Donos N, Horvath A, Mezzomo LA, et al.The role of immediate provisional restorations on implants with a hydrophilic surface: a randomised, single-blind controlled clinical trial[J]. Clin Oral Implants Res, 2018,29(1):55-66. DOI: 10.1111/clr.13038. [35] Donos N, Horvath A, Calciolari E, et al.Immediate provisionalization of bone level implants with a hydrophilic surface. A five-year follow-up of a randomized controlled clinical trial[J]. Clin Oral Implants Res, 2019,30(2):139-149. DOI: 10.1111/clr.13400. [36] Botticelli D, Berglundh T, Buser D, et al.The jumping distance revisited: an experimental study in the dog[J]. Clin Oral Implants Res, 2003,14(1):35-42. DOI: 10.1034/j.1600-0501.2003.140105.x. [37] Lai HC, Zhuang LF, Zhang ZY, et al.Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs[J]. Clin Oral Implants Res, 2009,20(3):247-253. DOI: 10.1111/j.1600-0501.2008.01651.x. [38] El Chaar E, Zhang L, Zhou Y, et al.Osseointegration of superhydrophilic implants placed in defect grafted bones[J]. Int J Oral Maxillofac Implants, 2019,34(2):443-450. DOI: 10.11607/jomi.7172. [39] Schwarz F, Herten M, Sager M, et al.Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs[J]. J Clin Periodontol, 2007,34(1):78-86. DOI: 10.1111/j.1600-051X.2006.01008.x. [40] Schwarz F, Sager M, Ferrari D, et al.Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive) and conventional SLA titanium implants: an immunohistochemical study in dogs[J]. J Clin Periodontol, 2008,35(1):64-75. DOI: 10.1111/j.1600-051X.2007.01159.x. [41] Schwarz F, Jung RE, Fienitz T, et al.Impact of guided bone regeneration and defect dimension on wound healing at chemically modified hydrophilic titanium implant surfaces: an experimental study in dogs[J]. J Clin Periodontol, 2010,37(5):474-485. DOI: 10.1111/j.1600-051X.2010.01551.x. [42] Verket A, Müller B, Wohlfahrt JC, et al.TiO(2) scaffolds in peri-implant dehiscence defects: an experimental pilot study[J]. Clin Oral Implants Res, 2016,27(10):1200-1206. DOI: 10.1111/clr.12725. [43] Dos Santos Trento G, Hassumi JS, Buzo Frigério P, et al. Gene expression, immunohistochemical and microarchitectural evaluation of bone formation around two implant surfaces placed in bone defects filled or not with bone substitute material[J]. Int J Implant Dent, 2020,6(1):80. DOI: 10.1186/s40729-020-00279-7. [44] Rupp F, Scheideler L, Olshanska N, et al.Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces[J]. J Biomed Mater Res A, 2006,76(2):323-334. DOI: 10.1002/jbm.a.30518. [45] Hong J, Kurt S, Thor A.A hydrophilic dental implant surface exhibits thrombogenic properties in vitro[J]. Clin Implant Dent Relat Res, 2013,15(1):105-112. DOI: 10.1111/j.1708-8208.2011.00362.x. [46] 李雪菁, 邱小亥, 赵宝红. 亲水种植体促进骨整合机制研究进展[J].中国实用口腔科杂志,2020,13(8):501-505. DOI: 10.19538/j.kq.2020.08.010. |
[1] | Zhou Yanmin, Qin Qiuyue. Clinical implications of 3-dimensional osteogenesis model for maxillary sinus to promote osteogenesis in maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 69-76. |
[2] | Yu Zhengrong, Guo Shuigen, Yang Jingjing, Mao Weihua, Wei Hongwu. Influence of anatomical factors of maxillary sinus on the remodeling of bone graft materials for maxillary sinus floor lift [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 82-89. |
[3] | Gong Jiaming, Zhao Ruimin, Zhang Qihang, Yu Zhanhai, Su Linhan. The autologous platelet concentrates for maxillary sinus floor elevation: an overview of systematic reviews [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 102-108. |
[4] | Luo Guisheng, Liu Yumeng, Wang Penglai, Yuan Changyong. Research progress on trace elements modification of PEEK implant [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 109-113. |
[5] | Chen Deping, Liu Qian, Pi Xuemin, Pan Hong, Ren Bin, Su Yucheng. Clinical procedure of transalveolar technique for sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 128-132. |
[6] | Chinese Society of Oral Implantology. Expert consensus on bone grafting materials for maxillary sinus floor elevation: bone substitutes [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 3-8. |
[7] | Zhou Yanmin, Zhu Yuemeng. Construction of the 3-dimensional osteogenesis model for maxillary sinus [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 9-18. |
[8] | Chen Danying, Wu Xiayi, Liu Quan, Chen Zhuofan. Custom impression techniques of multi-unit implant-supported prosthesis in aesthetic zone [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 30-34. |
[9] | Xu Yifan, Ye Ying. The influence of anatomical characteristics of the alveolar bone on the outcome of guided bone regeneration in the aesthetic zone [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 47-52. |
[10] | Deng Lei, Huang Haitao. Progress in the study of osteogenesis after maxillary sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 53-57. |
[11] | Chinese Society of Oral Implantology. Expert consensus on bone grafting materials for sinus floor elevation: bioactive agents, cell therapies and graft-free sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 329-333. |
[12] | Ji Ping. Research progress of 3D printing individualized titanium mesh for complex bone augmentation [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 334-339. |
[13] | Zhao Man, Zheng Yaqi, Yan Zhengbin, Li Xiaomin, Yang Xiaoyu. Implant failure caused by mandible fibro-osseous lesions: a case report and the literature review [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 346-351. |
[14] | Chinese Society of Oral Implantology. Expert consensus on complications of sinus floor elevation: displacement of dental implant into the maxillary sinus (first edition) [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 264-268. |
[15] | Chinese Society of Oral Implantology. Expert consensus on bone grafting materials for maxillary sinus floor elevation: autogenous bone [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 269-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||