中国口腔种植学杂志 ›› 2025, Vol. 29 ›› Issue (6): 602-609.DOI: 10.12337/zgkqzzxzz.2024.12.025
李健1,2, 梁晔3, 赵保东1,2
收稿日期:
2024-08-05
出版日期:
2025-01-02
发布日期:
2025-01-02
通讯作者:
赵保东,Email:zbd315@sina.com,电话:0532-82913583
作者简介:
李健 博士研究生在读、住院医师,研究方向:种植体周炎、牙周病、口腔生物材料;赵保东 主任医师、教授、博士研究生导师,研究方向:口腔种植及修复、种植体周炎、口腔生物材料
Li Jian1,2, Liang Ye3, Zhao Baodong1,2
Received:
2024-08-05
Online:
2025-01-02
Published:
2025-01-02
Contact:
Zhao Baodong, Email: zbd315@sina.com, Tel: 0086-532-82913583
摘要: 金属有机框架(metal-organic frameworks,MOFs)是一类由金属节点与有机配体通过自组装形成的纳米多孔材料,具有高度有序的孔隙率和孔径、高比表面积和多样的结构。随着MOFs在生物医学领域的发展和应用,越来越多的研究者将MOFs引入口腔医学领域进行研究,并根据口腔环境和疾病的特点,改造或开发新的MOFs用于口腔领域疾病的治疗。口腔领域常用的MOFs主要是沸石型咪唑酸框架-8(zeolitic imidazolate framework-8,ZIF-8)和沸石型咪唑酸框架-67(zeolitic imidazolate framework-67,ZIF-67)2种材料。MOFs的结构及功能适用于口腔疾病的治疗,目前已被用于牙周病、口腔颌面部肿瘤、牙体牙髓病和口腔种植领域的研究并取得一定成果,但仍需临床试验的进一步验证。
李健,梁晔,赵保东. 金属有机框架材料在口腔医学领域的研究进展[J]. 中国口腔种植学杂志, 2025, 29(6): 602-609. DOI: 10.12337/zgkqzzxzz.2024.12.025
Li Jian, Liang Ye, Zhao Baodong. Research progress on metal-organic frameworks in dental medicine[J].Chinese Journal of Oral Implantology, 2025, 29(6): 602-609.DOI: 10.12337/zgkqzzxzz.2024.12.025.
[1] Yang J, Yang YW.Metal-organic frameworks for biomedical applications[J]. Small, 2020, 16(10):e1906846. DOI: 10.1002/smll.201906846. [2] Li H, Eddaoudl M,O'Keeffe M,et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999,402:277-279. [3] Wang D, Yao H, Ye J, et al.Metal-organic frameworks (MOFs): classification, synthesis, modification, and biomedical applications[J]. Small, 2024 :e2404350. DOI: 10.1002/smll.202404350. [4] Bennett TD, Cheetham AK, Fuchs AH, et al.Interplay between defects, disorder and flexibility in metal-organic frameworks[J]. Nat Chem, 2016, 9(1):11-16. DOI: 10.1038/nchem.2691. [5] Shen K, Zhang L, Chen X, et al.Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372):206-210. DOI: 10.1126/science.aao3403. [6] Liu Y, Zhao Y, Chen X.Bioengineering of metal-organic frameworks for nanomedicine[J]. Theranostics, 2019, 9(11):3122-3133. DOI: 10.7150/thno.31918. [7] Li B, Wen HM, Cui Y, et al.Emerging multifunctional metal-organic framework materials[J]. Adv Mater, 2016, 28(40):8819-8860. DOI: 10.1002/adma.201601133. [8] Begum S, Hassan Z, Bräse S, et al.Metal-organic framework-templated biomaterials: recent progress in synthesis, functionalization, and applications[J]. Acc Chem Res, 2019, 52(6):1598-1610. DOI: 10.1021/acs.accounts.9b00039. [9] Chen Y, Li P, Modica JA, et al.Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release[J]. J Am Chem Soc, 2018, 140(17):5678-5681. DOI: 10.1021/jacs.8b02089. [10] Wu Q, Niu M, Chen X, et al.Biocompatible and biodegradable zeolitic imidazolate framework/ polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy[J]. Biomaterials, 2018, 162:132-143. DOI: 10.1016/j.biomaterials.2018.02.022. [11] Lian X, Huang Y, Zhu Y, et al.Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy[J]. Angew Chem Int Ed Engl, 2018, 57(20):5725-5730. DOI: 10.1002/anie.201801378. [12] Wuttke S, Lismont M, Escudero A, et al.Positioning metal-organic framework nanoparticles within the context of drug delivery - a comparison with mesoporous silica nanoparticles and dendrimers[J]. Biomaterials, 2017, 123:172-183. DOI: 10.1016/j.biomaterials.2017.01.025. [13] Chen Y, Li X, Liu S, et al.Metal-organic framework-derived multifunctional nucleic acid nanoprobes for hypoxia imaging-guided radiosensitization[J]. Anal Chem, 2023, 95(28):10644-10654. DOI: 10.1021/acs.analchem.3c01099. [14] Birhanli E, Noma S, Boran F, et al.Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes[J]. Chemosphere, 2022, 292:133382. DOI: 10.1016/j.chemosphere. 2021.133382. [15] Yang C, Chen K, Chen M, et al.Nanoscale metal-organic framework based two-photon sensing platform for bioimaging in live tissue[J]. Anal Chem, 2019, 91(4):2727-2733. DOI: 10.1021/acs.analchem.8b04405. [16] Si Y, Liu H, Li M, et al.An efficient metal-organic framework-based drug delivery platform for synergistic antibacterial activity and osteogenesis[J]. J Colloid Interface Sci, 2023, 640:521-539. DOI: 10.1016/j.jcis.2023.02.149. [17] Liu X, Zhao Y, Li F.Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing[J]. Biosens Bioelectron, 2021, 173:112832. DOI: 10.1016/j.bios.2020.112832. [18] Shao L, Gao X, Liu J, et al.Biodegradable metal-organic-frameworks-mediated protein delivery enables intracellular cascade biocatalysis and pyroptosis in vivo[J]. ACS Appl Mater Interfaces, 2022, 14(42):47472-47481. DOI: 10.1021/acsami.2c14957. [19] Wu R, Yu T, Liu S, et al.A heterocatalytic metal-organic framework to stimulate dispersal and macrophage combat with infectious biofilms[J]. ACS Nano, 2023, 17(3):2328-2340. DOI: 10.1021/acsnano.2c09008. [20] Liang N, Ren N, Feng Z, et al.Biomimetic metal-organic frameworks as targeted vehicles to enhance osteogenesis[J]. Adv Healthc Mater, 2022, 11(12):e2102821. DOI: 10.1002/adhm.202102821. [21] Zhao W, Deng J, Ren Y, et al.Antibacterial application and toxicity of metal-organic frameworks[J]. Nanotoxicology, 2021, 15(3):311-330. DOI: 10.1080/ 17435390.2020.1851420. [22] Park KS, Ni Z, Côté AP, et al.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc Natl Acad Sci USA, 2006, 103(27):10186-10191. DOI: 10.1073/pnas.0602439103. [23] Rastin F, Oryani MA, Iranpour S, et al.A new era in cancer treatment: harnessing ZIF-8 nanoparticles for PD-1 inhibitor delivery[J]. J Mater Chem B, 2024, 12(4):872-894. DOI: 10.1039/d3tb02471g. [24] Sun W, Zhai X, Zhao L.Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions[J]. Chem Eng J, 2016, 289(1):59-64. DOI:10.1016/J.CEJ.2015.12.076. [25] SHUAI C, ZAN J, DENG F, et al.Core-shell-structured ZIF-8@PDA-HA with controllable zinc ion release and superior bioactivity for improving a poly- l -lactic acid scaffold[J]. ACS Sustainable Chem & Eng, 2021, 9(4):1814-1825.DOI:10.1021/acssuschemeng. 0c08009. [26] Alves MM, Bouchami O, Tavares A, et al.New insights into antibiofilm effect of a nanosized ZnO coating against the pathogenic methicillin resistant staphylococcus aureus[J]. ACS Appl Mater Interfaces, 2017, 9(34):28157-28167. DOI: 10.1021/acsami.7b02320. [27] Bellina F, Cauteruccio S, Rossi R .Synthesis and biological activity of vicinal diaryl-substituted 1H-imidazoles[J].Cheminform, 2007, 63(22): 4571-4624. DOI:10.1016/j.tet.2007.02.075. [28] Li X, Qi M, Li C,et al.Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis[J].J of mater chem. B, 2019, 7(44):6955.DOI:10.1039/c9tb01743g. [29] Yao S, Chi J, Wang Y, et al.Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing[J]. Adv Healthc Mater, 2021, 10(12):e2100056. DOI: 10.1002/adhm. 202100056. [30] Zhu D, Su Y, Young ML, et al.Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials[J]. ACS Appl Mater Interfaces, 2017, 9(33):27453-27461. DOI: 10.1021/acsami.7b06654. [31] Yamaguchi M, Weitzmann MN.Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation[J]. Mol Cell Biochem, 2011, 355(1-2):179-186. DOI: 10.1007/s11010-011-0852-z. [32] Liu Y, Zhu Z, Pei X, et al.ZIF-8-modified multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(33):36978-36995. DOI: 10.1021/acsami.0c12090. [33] Lao A, Wu J, Li Dejian, et al.Functionalized metal-organic framework‐modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J].Small, 2023, 19(36):e2206919. [34] Zhang JY, Liu DX, Zhong GH.The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts[J]. J Mater Chem A. Mater Energy Sustainability, 2018,6(5): 1887-1899. DOI:10.1039/c7ta08268a. [35] Pan Y, Sun K, Liu S, et al.Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. J Am Chem Soc, 2018, 140(7):2610-2618. DOI: 10.1021/jacs.7b12420. [36] Gallegos-Monterrosa R, Mendiola RO, Nuñez Y, et al.Antibacterial and antibiofilm activities of ZIF-67[J]. J Antibiot (Tokyo), 2023, 76(10):603-612. DOI: 10.1038/s41429-023-00637-8. [37] Mohamed AM, Abbas WA, Khedr GE, et al.Computational and experimental elucidation of the boosted stability and antibacterial activity of ZIF-67 upon optimized encapsulation with polyoxometalates[J]. Sci Rep, 2022, 12(1):15989. DOI: 10.1038/s41598-022-20392-4. [38] 常亮. 重金属元素镉、铬、钴、铅、锰、铊在人体骨与血中含量与年龄变化的关系探究[D].南京:南京大学,2018. [39] Simonsen LO, Harbak H, Bennekou P.Cobalt metabolism and toxicology--a brief update[J]. Sci Total Environ, 2012, 432:210-215. DOI: 10.1016/j.scitotenv.2012.06.009. [40] Yellowley CE, Genetos DC.Hypoxia signaling in the skeleton: implications for bone health[J]. Curr Osteoporos Rep, 2019, 17(1):26-35. DOI: 10.1007/s11914-019-00500-6. [41] Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, et al.The role of vasculature in bone development, regeneration and proper systemic functioning[J]. Angiogenesis, 2017, 20(3):291-302. DOI: 10.1007/s10456-017-9541-1. [42] Sun Y, Liu X, Zhu Y, et al.Tunable and controlled release of cobalt Ions from metal-organic framework hydrogel nanocomposites enhances bone regeneration[J]. ACS Appl Mater Interfaces, 2021, 13(49):59051-59066. DOI: 10.1021/acsami.1c16300. [43] Sies H, Jones DP.Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7):363-383. DOI: 10.1038/s41580-020-0230-3. [44] Hirschfeld J, White PC, Milward MR, et al.Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria[J]. Infect Immun, 2017, 85(12):e00297-e00217. DOI: 10.1128/IAI.00297-17. [45] Baltacıoğlu E, Kehribar MA, Yuva P, et al.Total oxidant status and bone resorption biomarkers in serum and gingival crevicular fluid of patients with periodontitis[J]. J Periodontol, 2014, 85(2):317-326. DOI: 10.1902/jop.2013.130012. [46] Tian Y, Li Y, Liu J, et al.Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis[J]. Bioact Mater, 2022, 9:428-445. DOI: 10.1016/j.bioactmat.2021.07.033. [47] Li J, Song S, Meng J, et al.2D MOF periodontitis photodynamic ion therapy[J]. J Am Chem Soc, 2021, 143(37):15427-15439. DOI: 10.1021/jacs.1c07875. [48] Lu S, Ren X, Guo T, et al.Controlled release of iodine from cross-linked cyclodextrin metal-organic frameworks for prolonged periodontal pocket therapy[J]. Carbohydr Polym, 2021, 267:118187. DOI: 10.1016/j.carbpol.2021.118187. [49] Li N, Xie L, Wu Y, et al.Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment[J]. Mater Today Bio, 2022, 16:100360. DOI: 10.1016/j.mtbio.2022.100360. [50] 范春. 载PGRN原位组织工程水凝胶促炎性牙周骨缺损再生的作用研究[D].济南:山东大学,2023. [51] Hughes FJ, Ghuman M, Talal A.Periodontal regeneration: a challenge for the tissue engineer?[J]. Proc Inst Mech Eng H, 2010, 224(12):1345-1358. DOI: 10.1243/09544119JEIM820. [52] Shu Z, Zhang C, Yan L, et al.Antibacterial and osteoconductive polycaprolactone/polylactic acid/nano-hydroxyapatite/Cu@ZIF-8 GBR membrane with asymmetric porous structure[J]. Int J Biol Macromol, 2023, 224:1040-1051. DOI: 10.1016/j.ijbiomac.2022.10.189. [53] Ejeian F, Razmjou A, Nasr-Esfahani MH, et al.ZIF-8 modified polypropylene membrane: a biomimetic cell culture platform with a view to the improvement of guided bone regeneration[J]. Int J Nanomedicine, 2020, 15:10029-10043. DOI: 10.2147/IJN.S269169. [54] Mousavi SM, Hashemi SA, Fallahi Nezhad F, et al.Innovative metal-organic frameworks for targeted oral cancer therapy: a review[J]. Materials (Basel), 2023, 16(13):4685. DOI: 10.3390/ma16134685. [55] Tan Y, Wang Z, Xu M, et al.Oral squamous cell carcinomas: state of the field and emerging directions[J]. Int J Oral Sci, 2023, 15(1):44. DOI: 10.1038/s41368-023-00249-w. [56] Chamoli A, Gosavi AS, Shirwadkar UP, et al.Overview of oral cavity squamous cell carcinoma: risk factors, mechanisms, and diagnostics[J]. Oral Oncol, 2021, 121:105451. DOI: 10.1016/j.oraloncology. 2021.105451. [57] Dhawan U, Tseng CL, Wu PH, et al.Theranostic doxorubicin encapsulated FeAu alloy@metal-organic framework nanostructures enable magnetic hyperthermia and medical imaging in oral carcinoma[J]. Nanomedicine, 2023, 48:102652. DOI: 10.1016/j.nano.2023.102652. [58] Dai H, Yan H, Dong F, et al.Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer[J]. Biomater Sci, 2022, 10(6):1456-1469. DOI: 10.1039/d1bm01780b. [59] Zhou D, Chen Y, Bu W, et al.Modification of metal-organic framework nanoparticles using dental pulp mesenchymal stem cell membranes to target oral squamous cell carcinoma[J]. J Colloid Interface Sci, 2021, 601:650-660. DOI: 10.1016/j.jcis.2021.05.126. [60] Xiao Y, Lai F, Xu M, et al.Dual-functional nanoplatform based on bimetallic metal-organic frameworks for synergistic starvation and chemodynamic therapy[J]. ACS Biomater Sci Eng, 2023, 9(4):1991-2000. DOI: 10.1021/acsbiomaterials.2c01476. [61] Wang X, Sun X, Ma C, et al.Multifunctional AuNPs@HRP@FeMOF immune scaffold with a fully automated saliva analyzer for oral cancer screening[J]. Biosens Bioelectron, 2023, 222:114910. DOI: 10.1016/j.bios.2022.114910. [62] Bim-Júnior O, Gaglieri C, Bedran-Russo AK, et al.MOF-based erodible system for on-demand release of bioactive flavonoid at the polymer-tissue interface[J]. ACS Biomater Sci Eng, 2020, 6(8):4539-4550. DOI: 10.1021/acsbiomaterials.0c00564. [63] Bim-Junior O, Alania Y, Tabatabaei FS, et al.Biomimetic growth of metal-organic frameworks for the stabilization of the dentin matrix and control of collagenolysis[J]. Langmuir, 2022, 38(4):1600-1610. DOI: 10.1021/acs.langmuir.1c03073. [64] Wang H, Chen X, Zhang L, et al.Dual-fuel propelled nanomotors with two-stage permeation for deep bacterial infection in the treatment of pulpitis[J]. Adv Sci (Weinh), 2024, 11(5):e2305063. DOI: 10.1002/advs.202305063. [65] Zhou H, Jing S, Xiong W, et al.Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury[J]. J Nanobiotechnology, 2023, 21(1):316. DOI: 10.1186/s12951-023-02001-2. [66] Wang L, Wang W, Zhao H, et al.Bioactive effects of low-temperature argon-oxygen plasma on a titanium implant surface[J]. ACS Omega, 2020, 5(8):3996-4003. DOI: 10.1021/acsomega.9b03504. [67] Berardi D, De Benedittis S, Scoccia A, et al.New laser-treated implant surfaces: a histologic and histomorphometric pilot study in rabbits[J]. Clin Invest Med, 2011, 34(4):e202. DOI: 10.25011/cim.v34i4.15361. [68] Mishra SK, Kumar MA, Chowdhary R.Anodized dental implant surface[J]. Indian J Dent Res, 2017, 28(1):76-99. DOI: 10.4103/ijdr.IJDR_386_16. [69] Zhang X, Chen J, Pei X, et al.Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8[J]. ACS Appl Mater Interfaces, 2017, 9(30):25171-25183. DOI: 10.1021/acsami.7b07800. [70] Fardjahromi MA, Ejeian F, Razmjou A, et al.Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating[J]. Mater Sci Eng C Mater Biol Appl, 2021, 123:111972. DOI: 10.1016/j.msec.2021.111972. [71] Wang L, Dai F, Yang Y, et al.Zeolitic imidazolate framework-8 with encapsulated naringin synergistically improves antibacterial and osteogenic properties of Ti implants for osseointegration[J]. ACS Biomater Sci Eng, 2022, 8(9):3797-3809. DOI: 10.1021/acsbiomaterials.2c00154. [72] Li X, Xu M, Geng Z, et al.Novel pH-responsive CaO(2)@ZIF-67-HA-ADH coating that efficiently enhances the antimicrobial, osteogenic, and angiogenic properties of titanium implants[J]. ACS Appl Mater Interfaces, 2023, 15(36):42965-42980. DOI: 10.1021/acsami.3c08233. [73] 张玉英. 口腔微生态pH平衡与龋病牙周炎相关性研究[D].青岛:青岛大学, 2015. |
[1] | 郭一馨, 夏薇, 王侗飞, 王君婷, 皮甜甜, 邓荣纳, 梁美琦, 容明灯, 曾艳. 下颌后牙区种植修复前行角化黏膜增宽术的时机考量及临床体会[J]. 中国口腔种植学杂志, 2025, 29(6): 568-573. |
[2] | 李福龙, 邓宇, 田思睿, 高静, 赵宝红. 布鲁姆目标分类理论在口腔种植学住院医师规范化培训中的应用[J]. 中国口腔种植学杂志, 2025, 29(6): 610-615. |
[3] | 高明, 牛力璇, 朱一博. 应用自体牙本质块行骨增量的临床和组织学研究[J]. 中国口腔种植学杂志, 2024, 29(5): 435-439. |
[4] | 杜奥博, 满毅. 美学区分阶段骨增量联合邻牙显微根尖手术的治疗策略:临床诊治流程及实践病例[J]. 中国口腔种植学杂志, 2024, 29(5): 440-444. |
[5] | 柴浩然, 刘艺, 王尊硕, 郎哲宇, 李晨辉, 朱升辉, 张学普, 张月. 辽宁5市中老年牙缺失患者对口腔种植意愿及相关因素的调查[J]. 中国口腔种植学杂志, 2024, 29(5): 467-473. |
[6] | 戴雨薇, 兰嵘, 吴轶群, 王凤. 牙槽突裂患者的牙种植治疗现状与研究进展[J]. 中国口腔种植学杂志, 2024, 29(5): 486-491. |
[7] | 白轶, 柴纪华, 张晓欣, 夏婷, 曾浩. SAC分类在口腔种植规培教学中的探索与实践[J]. 中国口腔种植学杂志, 2024, 29(5): 498-501. |
[8] | 汤祎熳, 邱立新. 器官移植患者接受种植治疗时的临床思考[J]. 中国口腔种植学杂志, 2024, 29(4): 297-302. |
[9] | 赵国强, 宋应亮. 2型糖尿病个体进行即刻种植即刻修复预后的动物实验研究[J]. 中国口腔种植学杂志, 2024, 29(4): 311-319. |
[10] | 张燕婷, 汪伟, 陈莉, 赵雯, 周炜. ASA Ⅲ级心血管疾病患者口腔种植修复的围手术期风险评估与管理[J]. 中国口腔种植学杂志, 2024, 29(4): 328-335. |
[11] | 邱韵, 王宇蓝, 张玉峰. 骨质疏松症对牙种植的影响及临床考量[J]. 中国口腔种植学杂志, 2024, 29(4): 336-341. |
[12] | 王一茗, 李昕茹, 滕微微, 马骏驰, 周立波. 口腔种植机器人在临床前及临床研究应用精度的Meta分析[J]. 中国口腔种植学杂志, 2024, 29(4): 362-370. |
[13] | 李歆, 刘开政, 武诗语, 刘远翔, 黄宝鑫, 乔威, 潘浩波, 陈卓凡. 口腔种植治疗中骨再生材料的研究现状[J]. 中国口腔种植学杂志, 2024, 29(4): 371-377. |
[14] | 陈江, 丘雨蓓. 数字化技术在口腔种植骨增量中的应用及研究进展[J]. 中国口腔种植学杂志, 2024, 29(3): 252-257. |
[15] | 王铭阳, 黄海涛. 质子泵抑制剂对口腔种植体骨结合影响的研究进展[J]. 中国口腔种植学杂志, 2024, 29(3): 277-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||