[1] Weisel JW. Structure of fibrin: impact on clot stability[J]. J Thromb Haemost, 2007, 5 Suppl 1:116-124. DOI: 10.1111/j.1538-7836.2007.02504.x. [2] Hsieh JY, Smith TD, Meli VS, et al.Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen[J]. Acta Biomater, 2017, 47:14-24. DOI: 10.1016/j.actbio.2016.09.024. [3] Chen Z, Bachhuka A, Wei F, et al.Nanotopography-based strategy for the precise manipulation of osteoimmuno-modulation in bone regeneration[J]. Nanoscale, 2017, 9(46):18129-18152. DOI: 10.1039/c7nr05913b. [4] Wang HL, Boyapati L."PASS" principles for predictable bone regeneration[J]. Implant Dent, 2006, 15(1):8-17. DOI: 10.1097/01.id.0000204762.39826.0f. [5] Park SH, Silva M, Bahk WJ, et al.Effect of repeated irrigation and debridement on fracture healing in an animal model[J]. J Orthop Res, 2002, 20(6):1197-1204. DOI: 10.1016/S0736-0266(02)00072-4. [6] Chen Z, Klein T, Murray RZ, et al.Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Materials Today, 2016, 19(6): 304-321.DOI:10.1016/j.mattod.2015.11.004. [7] Abnave P, Ghigo E.Role of the immune system in regeneration and its dynamic interplay with adult stem cells[J]. Semin Cell Dev Biol, 2019, 87:160-168. DOI: 10.1016/j.semcdb.2018.04.002. [8] Longoni A, Knežević L, Schepers K, et al.The impact of immune response on endochondral bone regeneration[J]. NPJ Regen Med, 2018, 3:22. DOI: 10.1038/s41536-018-0060-5. [9] Oishi Y, Manabe I.Macrophages in inflammation, repair and regeneration[J]. Int Immunol, 2018, 30(11):511-528. DOI: 10.1093/intimm/dxy054. [10] Chen L, Liu G, Wu J, et al.Multi-faceted effects of mesenchymal stem cells (MSCs) determined by immune microenvironment and their implications on MSC/biomaterial-based inflammatory disease therapy[J]. Applied Materials Today, 2020, 18: 100485. DOI:10.1016/j.apmt.2019.100485. [11] Barbul A, Breslin RJ, Woodyard JP, et al.The effect of in vivo T helper and T suppressor lymphocyte depletion on wound healing[J]. Ann Surg, 1989, 209(4):479-483. DOI: 10.1097/00000658-198904000-00015. [12] Wu S, Shan Z, Xie L, et al.Mesopore controls the responses of blood clot-immune complex via modulating fibrin network[J]. Adv Sci (Weinh), 2022, 9(3):e2103608. DOI: 10.1002/advs.202103608. [13] Kazura JW, Wenger JD, Salata RA, et al.Modulation of polymorphonuclear leukocyte microbicidal activity and oxidative metabolism by fibrinogen degradation products D and E[J]. J Clin Invest, 1989, 83(6):1916-1924. DOI: 10.1172/JCI114098. [14] Wei F, Liu G, Guo Y, et al.Blood prefabricated hydroxyapatite/tricalcium phosphate induces ectopic vascularized bone formation via modulating the osteoimmune environment[J]. Biomater Sci, 2018, 6(8): 2156-2171. DOI: 10.1039/c8bm00287h. [15] Wang X, Luo Y, Yang Y, et al.Alteration of clot architecture using bone substitute biomaterials (beta-tricalcium phosphate) significantly delays the early bone healing process[J]. J Mater Chem B, 2018, 6(48):8204-8213. DOI: 10.1039/c8tb01747f. [16] Springer TA, Zhu J, Xiao T.Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3[J]. J Cell Biol, 2008, 182(4):791-800. DOI: 10.1083/jcb.200801146. [17] Marguerie GA, Edgington TS, Plow EF.Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation[J]. J Biol Chem, 1980, 255(1):154-161. [18] Walzog B, Weinmann P, Jeblonski F, et al.A role for beta 2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response[J]. Faseb J, 1999, 13(13):1855-1865. DOI: 10.1096/fasebj.13.13.1855. [19] Ugarova TP, Solovjov DA, Zhang L, et al.Identification of a novel recognition sequence for integrin alphaM beta2 within the gamma-chain of fibrinogen[J]. J Biol Chem, 1998, 273(35):22519-22527. DOI: 10.1074/jbc.273.35.22519. [20] Yakovlev S, Medved L.Interaction of fibrin with the very low-density lipoprotein (VLDL) receptor: further characterization and localization of the VLDL receptor-binding site in fibrin βN-domains[J]. Biochemistry, 2017, 56(19):2518-2528. DOI: 10.1021/acs.biochem.7b00087. [21] Sitrin RG, Pan PM, Srikanth S, et al.Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes[J]. J Immunol, 1998, 161(3):1462-1470. [22] Antonov AS, Antonova GN, Munn DH, et al.αVβ3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-κB activation[J]. J Cell Physiol, 2011, 226(2):469-476. DOI: 10.1002/jcp.22356. [23] Smiley ST, King JA, Hancock WW.Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4[J]. J Immunol, 2001, 167(5):2887-2894. DOI: 10.4049/jimmunol.167.5.2887. [24] Karp JM, Sarraf F, Shoichet MS, et al.Fibrin-filled scaffolds for bone-tissue engineering: an in vivo study[J]. J Biomed Mater Res A, 2004, 71(1):162-171. DOI: 10.1002/jbm.a.30147. [25] Van Kooyk Y, Figdor CG.Avidity regulation of integrins: the driving force in leukocyte adhesion[J]. Curr Opin Cell Biol, 2000, 12(5):542-547. DOI: 10.1016/s0955-0674(00)00129-0. [26] Mana M, Cole M, Cox S, et al.Human U937 monocyte behavior and protein expression on various formulations of three-dimensional fibrin clots[J]. Wound Repair Regen, 2006, 14(1):72-80. DOI: 10.1111/j.1743-6109.2005.00091.x. [27] Vashaghian M, Zandieh-Doulabi B, Roovers JP, et al.Electrospun matrices for pelvic floor repair: effect of fiber diameter on mechanical properties and cell behavior[J]. Tissue Eng Part A, 2016, 22(23-24):1305-1316. DOI: 10.1089/ten.TEA.2016.0194. [28] Garg K, Pullen NA, Oskeritzian CA, et al.Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013, 34(18):4439-4451. DOI: 10.1016/j.biomaterials.2013.02.065. [29] Sarhane KA, Ibrahim Z, Martin R, et al.Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis[J]. Acta Biomater, 2019, 88:332-345. DOI: 10.1016/j.actbio.2019.02.034. [30] Sanders JE, Lamont SE, Mitchell SB, et al.Small fiber diameter fibro-porous meshes: tissue response sensitivity to fiber spacing[J]. J Biomed Mater Res A, 2005, 72(3): 335-342. DOI: 10.1002/jbm.a.30259. [31] Bruekers SM, Jaspers M, Hendriks JM, et al.Fibrin-fiber architecture influences cell spreading and differentiation[J]. Cell Adh Migr, 2016, 10(5):495-504. DOI: 10.1080/19336918.2016.1151607. [32] Mana M, Cole M, Cox S, et al.Human U937 monocyte behavior and protein expression on various formulations of three-dimensional fibrin clots[J]. Wound Repair Regen, 2006, 14(1):72-80. DOI: 10.1111/j.1743-6109.2005.00091.x. [33] Yakovlev S, Medved L.Effect of fibrinogen, fibrin, and fibrin degradation products on transendothelial migration of leukocytes[J]. Thromb Res, 2018, 162:93-100. DOI: 10.1016/j.thromres.2017.11.007. [34] Yakovlev S, Makogonenko E, Kurochkina N, et al.Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites[J]. Biochemistry, 2000, 39(51):15730-15741. DOI: 10.1021/bi001847a. [35] Lee ME, Rhee KJ, Nham SU.Fragment E derived from both fibrin and fibrinogen stimulates interleukin-6 production in rat peritoneal macrophages[J]. Mol Cells, 1999, 9(1):7-13. [36] Robson SC, Shephard EG, Kirsch RE.Fibrin degradation product D-dimer induces the synthesis and release of biologically active IL-1 beta, IL-6 and plasminogen activator inhibitors from monocytes in vitro[J]. Br J Haematol, 1994, 86(2):322-326. DOI: 10.1111/j.1365-2141.1994.tb04733.x. [37] Petzelbauer P, Zacharowski PA, Miyazaki Y, et al.The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury[J]. Nat Med, 2005, 11(3):298-304. DOI: 10.1038/nm1198. [38] Fuchs PÖ, Calitz C, Pavlović N, et al.Fibrin fragment E potentiates TGF-β-induced myofibroblast activation and recruitment[J]. Cell Signal, 2020, 72:109661. DOI: 10.1016/j.cellsig.2020.109661. [39] Murphy KC, Whitehead J, Zhou D, et al.Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids[J]. Acta Biomater, 2017, 64: 176-186.DOI:10.1016/j.actbio.2017.10.007. [40] Yang Y, Xiao Y.Biomaterials regulating bone hematoma for osteogenesis[J]. Adv Healthc Mater, 2020 :e2000726. DOI: 10.1002/adhm.202000726. [41] Bensaïd W, Triffitt JT, Blanchat C, et al.A biodegradable fibrin scaffold for mesenchymal stem cell transplantation[J]. Biomaterials, 2003, 24(14):2497-2502. DOI: 10.1016/s0142-9612(02)00618-x. [42] Sproul E, Nandi S, Brown A.6-Fibrin biomaterials for tissue regeneration and repair[J]. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair,2018: 151-173.DOI:10.1016/B978-0-08-100803-4.00006-1. [43] He S, Wallén H, Thålin C, et al.Fibrin network porosity and endo-/exogenous thrombin cross-talk[J]. Semin Thromb Hemost, 2021, 47(7):775-786. DOI: 10.1055/s-0041-1729963. [44] Rowe SL, Lee S, Stegemann JP.Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels[J]. Acta Biomater, 2007, 3(1):59-67. DOI: 10.1016/j.actbio.2006.08.006. [45] Gugerell A, Schossleitner K, Wolbank S, et al.High thrombin concentrations in fibrin sealants induce apoptosis in human keratinocytes[J]. J Biomed Mater Res A, 2012, 100(5):1239-1247. DOI: 10.1002/jbm.a.34007. [46] Hsieh JY, Keating MT, Smith TD, et al.Matrix crosslinking enhances macrophage adhesion, migration, and inflammatory activation[J]. APL Bioeng, 2019, 3(1):016103. DOI: 10.1063/1.5067301. [47] Barker TH, Fuller GM, Klinger MM, et al. Modification of fibrinogen with poly(ethylene glycol) and its effects on fibrin clot characteristics[J]. J Biomed Mater Res, 2001, 56(4):529-535. DOI: 10.1002/1097-4636(20010915)56:4<529::aid-jbm1124> 3.0.co;2-2. [48] Elvin CM, Brownlee AG, Huson MG, et al.The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant[J]. Biomaterials, 2009, 30(11):2059-2065. DOI: 10.1016/j.biomaterials.2008.12.059. [49] Binder V, Bergum B, Jaisson S, et al.Impact of fibrinogen carbamylation on fibrin clot formation and stability[J]. Thromb Haemost, 2017, 117(5):899-910. DOI: 10.1160/TH16-09-0704. [50] Collet JP, Moen JL, Veklich YI, et al.The alphaC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis[J]. Blood, 2005, 106(12):3824-3830. DOI: 10.1182/blood-2005-05-2150. [51] Stabenfeldt SE, Gourley M, Krishnan L, et al.Engineering fibrin polymers through engagement of alternative polymerization mechanisms[J]. Biomaterials, 2012, 33(2):535-544. DOI: 10.1016/j.biomaterials.2011.09.079. [52] Rowe SL, Stegemann JP.Microstructure and mechanics of collagen-fibrin matrices polymerized using ancrod snake venom enzyme[J]. J Biomech Eng, 2009, 131(6):061012. DOI: 10.1115/1.3128673. [53] Rahmany MB, Hantgan RR, Van Dyke M.A mechanistic investigation of the effect of keratin-based hemostatic agents on coagulation[J]. Biomaterials, 2013, 34(10):2492-2500. DOI: 10.1016/j.biomaterials.2012.12.008. [54] Gersh KC, Nagaswami C, Weisel JW.Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes[J]. Thromb Haemost, 2009, 102(6):1169-1175. DOI: 10.1160/TH09-03-0199. [55] Lam WA, Chaudhuri O, Crow A, et al.Mechanics and contraction dynamics of single platelets and implications for clot stiffening[J]. Nat Mater, 2011, 10(1):61-66. DOI: 10.1038/nmat2903. [56] Komorowicz E, Balázs N, Varga Z, et al.Hyaluronic acid decreases the mechanical stability, but increases the lytic resistance of fibrin matrices[J]. Matrix Biol, 2017, 63:55-68. DOI: 10.1016/j.matbio.2016.12.008. [57] Kang SW, Kim JS, Park KS, et al.Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration[J]. Bone, 2011, 48(2):298-306. DOI: 10.1016/j.bone.2010.09.029. |