Chinese Journal of Oral Implantology ›› 2025, Vol. 29 ›› Issue (6): 602-609.DOI: 10.12337/zgkqzzxzz.2024.12.025
• Reviews • Previous Articles Next Articles
Li Jian1,2, Liang Ye3, Zhao Baodong1,2
Received:
2024-08-05
Online:
2025-01-02
Published:
2025-01-02
Contact:
Zhao Baodong, Email: zbd315@sina.com, Tel: 0086-532-82913583
Li Jian, Liang Ye, Zhao Baodong. Research progress on metal-organic frameworks in dental medicine[J]. Chinese Journal of Oral Implantology, 2025, 29(6): 602-609.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2024.12.025
[1] Yang J, Yang YW.Metal-organic frameworks for biomedical applications[J]. Small, 2020, 16(10):e1906846. DOI: 10.1002/smll.201906846. [2] Li H, Eddaoudl M,O'Keeffe M,et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999,402:277-279. [3] Wang D, Yao H, Ye J, et al.Metal-organic frameworks (MOFs): classification, synthesis, modification, and biomedical applications[J]. Small, 2024 :e2404350. DOI: 10.1002/smll.202404350. [4] Bennett TD, Cheetham AK, Fuchs AH, et al.Interplay between defects, disorder and flexibility in metal-organic frameworks[J]. Nat Chem, 2016, 9(1):11-16. DOI: 10.1038/nchem.2691. [5] Shen K, Zhang L, Chen X, et al.Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372):206-210. DOI: 10.1126/science.aao3403. [6] Liu Y, Zhao Y, Chen X.Bioengineering of metal-organic frameworks for nanomedicine[J]. Theranostics, 2019, 9(11):3122-3133. DOI: 10.7150/thno.31918. [7] Li B, Wen HM, Cui Y, et al.Emerging multifunctional metal-organic framework materials[J]. Adv Mater, 2016, 28(40):8819-8860. DOI: 10.1002/adma.201601133. [8] Begum S, Hassan Z, Bräse S, et al.Metal-organic framework-templated biomaterials: recent progress in synthesis, functionalization, and applications[J]. Acc Chem Res, 2019, 52(6):1598-1610. DOI: 10.1021/acs.accounts.9b00039. [9] Chen Y, Li P, Modica JA, et al.Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release[J]. J Am Chem Soc, 2018, 140(17):5678-5681. DOI: 10.1021/jacs.8b02089. [10] Wu Q, Niu M, Chen X, et al.Biocompatible and biodegradable zeolitic imidazolate framework/ polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy[J]. Biomaterials, 2018, 162:132-143. DOI: 10.1016/j.biomaterials.2018.02.022. [11] Lian X, Huang Y, Zhu Y, et al.Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy[J]. Angew Chem Int Ed Engl, 2018, 57(20):5725-5730. DOI: 10.1002/anie.201801378. [12] Wuttke S, Lismont M, Escudero A, et al.Positioning metal-organic framework nanoparticles within the context of drug delivery - a comparison with mesoporous silica nanoparticles and dendrimers[J]. Biomaterials, 2017, 123:172-183. DOI: 10.1016/j.biomaterials.2017.01.025. [13] Chen Y, Li X, Liu S, et al.Metal-organic framework-derived multifunctional nucleic acid nanoprobes for hypoxia imaging-guided radiosensitization[J]. Anal Chem, 2023, 95(28):10644-10654. DOI: 10.1021/acs.analchem.3c01099. [14] Birhanli E, Noma S, Boran F, et al.Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes[J]. Chemosphere, 2022, 292:133382. DOI: 10.1016/j.chemosphere. 2021.133382. [15] Yang C, Chen K, Chen M, et al.Nanoscale metal-organic framework based two-photon sensing platform for bioimaging in live tissue[J]. Anal Chem, 2019, 91(4):2727-2733. DOI: 10.1021/acs.analchem.8b04405. [16] Si Y, Liu H, Li M, et al.An efficient metal-organic framework-based drug delivery platform for synergistic antibacterial activity and osteogenesis[J]. J Colloid Interface Sci, 2023, 640:521-539. DOI: 10.1016/j.jcis.2023.02.149. [17] Liu X, Zhao Y, Li F.Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing[J]. Biosens Bioelectron, 2021, 173:112832. DOI: 10.1016/j.bios.2020.112832. [18] Shao L, Gao X, Liu J, et al.Biodegradable metal-organic-frameworks-mediated protein delivery enables intracellular cascade biocatalysis and pyroptosis in vivo[J]. ACS Appl Mater Interfaces, 2022, 14(42):47472-47481. DOI: 10.1021/acsami.2c14957. [19] Wu R, Yu T, Liu S, et al.A heterocatalytic metal-organic framework to stimulate dispersal and macrophage combat with infectious biofilms[J]. ACS Nano, 2023, 17(3):2328-2340. DOI: 10.1021/acsnano.2c09008. [20] Liang N, Ren N, Feng Z, et al.Biomimetic metal-organic frameworks as targeted vehicles to enhance osteogenesis[J]. Adv Healthc Mater, 2022, 11(12):e2102821. DOI: 10.1002/adhm.202102821. [21] Zhao W, Deng J, Ren Y, et al.Antibacterial application and toxicity of metal-organic frameworks[J]. Nanotoxicology, 2021, 15(3):311-330. DOI: 10.1080/ 17435390.2020.1851420. [22] Park KS, Ni Z, Côté AP, et al.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc Natl Acad Sci USA, 2006, 103(27):10186-10191. DOI: 10.1073/pnas.0602439103. [23] Rastin F, Oryani MA, Iranpour S, et al.A new era in cancer treatment: harnessing ZIF-8 nanoparticles for PD-1 inhibitor delivery[J]. J Mater Chem B, 2024, 12(4):872-894. DOI: 10.1039/d3tb02471g. [24] Sun W, Zhai X, Zhao L.Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions[J]. Chem Eng J, 2016, 289(1):59-64. DOI:10.1016/J.CEJ.2015.12.076. [25] SHUAI C, ZAN J, DENG F, et al.Core-shell-structured ZIF-8@PDA-HA with controllable zinc ion release and superior bioactivity for improving a poly- l -lactic acid scaffold[J]. ACS Sustainable Chem & Eng, 2021, 9(4):1814-1825.DOI:10.1021/acssuschemeng. 0c08009. [26] Alves MM, Bouchami O, Tavares A, et al.New insights into antibiofilm effect of a nanosized ZnO coating against the pathogenic methicillin resistant staphylococcus aureus[J]. ACS Appl Mater Interfaces, 2017, 9(34):28157-28167. DOI: 10.1021/acsami.7b02320. [27] Bellina F, Cauteruccio S, Rossi R .Synthesis and biological activity of vicinal diaryl-substituted 1H-imidazoles[J].Cheminform, 2007, 63(22): 4571-4624. DOI:10.1016/j.tet.2007.02.075. [28] Li X, Qi M, Li C,et al.Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis[J].J of mater chem. B, 2019, 7(44):6955.DOI:10.1039/c9tb01743g. [29] Yao S, Chi J, Wang Y, et al.Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing[J]. Adv Healthc Mater, 2021, 10(12):e2100056. DOI: 10.1002/adhm. 202100056. [30] Zhu D, Su Y, Young ML, et al.Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials[J]. ACS Appl Mater Interfaces, 2017, 9(33):27453-27461. DOI: 10.1021/acsami.7b06654. [31] Yamaguchi M, Weitzmann MN.Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation[J]. Mol Cell Biochem, 2011, 355(1-2):179-186. DOI: 10.1007/s11010-011-0852-z. [32] Liu Y, Zhu Z, Pei X, et al.ZIF-8-modified multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(33):36978-36995. DOI: 10.1021/acsami.0c12090. [33] Lao A, Wu J, Li Dejian, et al.Functionalized metal-organic framework‐modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J].Small, 2023, 19(36):e2206919. [34] Zhang JY, Liu DX, Zhong GH.The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts[J]. J Mater Chem A. Mater Energy Sustainability, 2018,6(5): 1887-1899. DOI:10.1039/c7ta08268a. [35] Pan Y, Sun K, Liu S, et al.Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. J Am Chem Soc, 2018, 140(7):2610-2618. DOI: 10.1021/jacs.7b12420. [36] Gallegos-Monterrosa R, Mendiola RO, Nuñez Y, et al.Antibacterial and antibiofilm activities of ZIF-67[J]. J Antibiot (Tokyo), 2023, 76(10):603-612. DOI: 10.1038/s41429-023-00637-8. [37] Mohamed AM, Abbas WA, Khedr GE, et al.Computational and experimental elucidation of the boosted stability and antibacterial activity of ZIF-67 upon optimized encapsulation with polyoxometalates[J]. Sci Rep, 2022, 12(1):15989. DOI: 10.1038/s41598-022-20392-4. [38] 常亮. 重金属元素镉、铬、钴、铅、锰、铊在人体骨与血中含量与年龄变化的关系探究[D].南京:南京大学,2018. [39] Simonsen LO, Harbak H, Bennekou P.Cobalt metabolism and toxicology--a brief update[J]. Sci Total Environ, 2012, 432:210-215. DOI: 10.1016/j.scitotenv.2012.06.009. [40] Yellowley CE, Genetos DC.Hypoxia signaling in the skeleton: implications for bone health[J]. Curr Osteoporos Rep, 2019, 17(1):26-35. DOI: 10.1007/s11914-019-00500-6. [41] Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, et al.The role of vasculature in bone development, regeneration and proper systemic functioning[J]. Angiogenesis, 2017, 20(3):291-302. DOI: 10.1007/s10456-017-9541-1. [42] Sun Y, Liu X, Zhu Y, et al.Tunable and controlled release of cobalt Ions from metal-organic framework hydrogel nanocomposites enhances bone regeneration[J]. ACS Appl Mater Interfaces, 2021, 13(49):59051-59066. DOI: 10.1021/acsami.1c16300. [43] Sies H, Jones DP.Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7):363-383. DOI: 10.1038/s41580-020-0230-3. [44] Hirschfeld J, White PC, Milward MR, et al.Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria[J]. Infect Immun, 2017, 85(12):e00297-e00217. DOI: 10.1128/IAI.00297-17. [45] Baltacıoğlu E, Kehribar MA, Yuva P, et al.Total oxidant status and bone resorption biomarkers in serum and gingival crevicular fluid of patients with periodontitis[J]. J Periodontol, 2014, 85(2):317-326. DOI: 10.1902/jop.2013.130012. [46] Tian Y, Li Y, Liu J, et al.Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis[J]. Bioact Mater, 2022, 9:428-445. DOI: 10.1016/j.bioactmat.2021.07.033. [47] Li J, Song S, Meng J, et al.2D MOF periodontitis photodynamic ion therapy[J]. J Am Chem Soc, 2021, 143(37):15427-15439. DOI: 10.1021/jacs.1c07875. [48] Lu S, Ren X, Guo T, et al.Controlled release of iodine from cross-linked cyclodextrin metal-organic frameworks for prolonged periodontal pocket therapy[J]. Carbohydr Polym, 2021, 267:118187. DOI: 10.1016/j.carbpol.2021.118187. [49] Li N, Xie L, Wu Y, et al.Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment[J]. Mater Today Bio, 2022, 16:100360. DOI: 10.1016/j.mtbio.2022.100360. [50] 范春. 载PGRN原位组织工程水凝胶促炎性牙周骨缺损再生的作用研究[D].济南:山东大学,2023. [51] Hughes FJ, Ghuman M, Talal A.Periodontal regeneration: a challenge for the tissue engineer?[J]. Proc Inst Mech Eng H, 2010, 224(12):1345-1358. DOI: 10.1243/09544119JEIM820. [52] Shu Z, Zhang C, Yan L, et al.Antibacterial and osteoconductive polycaprolactone/polylactic acid/nano-hydroxyapatite/Cu@ZIF-8 GBR membrane with asymmetric porous structure[J]. Int J Biol Macromol, 2023, 224:1040-1051. DOI: 10.1016/j.ijbiomac.2022.10.189. [53] Ejeian F, Razmjou A, Nasr-Esfahani MH, et al.ZIF-8 modified polypropylene membrane: a biomimetic cell culture platform with a view to the improvement of guided bone regeneration[J]. Int J Nanomedicine, 2020, 15:10029-10043. DOI: 10.2147/IJN.S269169. [54] Mousavi SM, Hashemi SA, Fallahi Nezhad F, et al.Innovative metal-organic frameworks for targeted oral cancer therapy: a review[J]. Materials (Basel), 2023, 16(13):4685. DOI: 10.3390/ma16134685. [55] Tan Y, Wang Z, Xu M, et al.Oral squamous cell carcinomas: state of the field and emerging directions[J]. Int J Oral Sci, 2023, 15(1):44. DOI: 10.1038/s41368-023-00249-w. [56] Chamoli A, Gosavi AS, Shirwadkar UP, et al.Overview of oral cavity squamous cell carcinoma: risk factors, mechanisms, and diagnostics[J]. Oral Oncol, 2021, 121:105451. DOI: 10.1016/j.oraloncology. 2021.105451. [57] Dhawan U, Tseng CL, Wu PH, et al.Theranostic doxorubicin encapsulated FeAu alloy@metal-organic framework nanostructures enable magnetic hyperthermia and medical imaging in oral carcinoma[J]. Nanomedicine, 2023, 48:102652. DOI: 10.1016/j.nano.2023.102652. [58] Dai H, Yan H, Dong F, et al.Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer[J]. Biomater Sci, 2022, 10(6):1456-1469. DOI: 10.1039/d1bm01780b. [59] Zhou D, Chen Y, Bu W, et al.Modification of metal-organic framework nanoparticles using dental pulp mesenchymal stem cell membranes to target oral squamous cell carcinoma[J]. J Colloid Interface Sci, 2021, 601:650-660. DOI: 10.1016/j.jcis.2021.05.126. [60] Xiao Y, Lai F, Xu M, et al.Dual-functional nanoplatform based on bimetallic metal-organic frameworks for synergistic starvation and chemodynamic therapy[J]. ACS Biomater Sci Eng, 2023, 9(4):1991-2000. DOI: 10.1021/acsbiomaterials.2c01476. [61] Wang X, Sun X, Ma C, et al.Multifunctional AuNPs@HRP@FeMOF immune scaffold with a fully automated saliva analyzer for oral cancer screening[J]. Biosens Bioelectron, 2023, 222:114910. DOI: 10.1016/j.bios.2022.114910. [62] Bim-Júnior O, Gaglieri C, Bedran-Russo AK, et al.MOF-based erodible system for on-demand release of bioactive flavonoid at the polymer-tissue interface[J]. ACS Biomater Sci Eng, 2020, 6(8):4539-4550. DOI: 10.1021/acsbiomaterials.0c00564. [63] Bim-Junior O, Alania Y, Tabatabaei FS, et al.Biomimetic growth of metal-organic frameworks for the stabilization of the dentin matrix and control of collagenolysis[J]. Langmuir, 2022, 38(4):1600-1610. DOI: 10.1021/acs.langmuir.1c03073. [64] Wang H, Chen X, Zhang L, et al.Dual-fuel propelled nanomotors with two-stage permeation for deep bacterial infection in the treatment of pulpitis[J]. Adv Sci (Weinh), 2024, 11(5):e2305063. DOI: 10.1002/advs.202305063. [65] Zhou H, Jing S, Xiong W, et al.Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury[J]. J Nanobiotechnology, 2023, 21(1):316. DOI: 10.1186/s12951-023-02001-2. [66] Wang L, Wang W, Zhao H, et al.Bioactive effects of low-temperature argon-oxygen plasma on a titanium implant surface[J]. ACS Omega, 2020, 5(8):3996-4003. DOI: 10.1021/acsomega.9b03504. [67] Berardi D, De Benedittis S, Scoccia A, et al.New laser-treated implant surfaces: a histologic and histomorphometric pilot study in rabbits[J]. Clin Invest Med, 2011, 34(4):e202. DOI: 10.25011/cim.v34i4.15361. [68] Mishra SK, Kumar MA, Chowdhary R.Anodized dental implant surface[J]. Indian J Dent Res, 2017, 28(1):76-99. DOI: 10.4103/ijdr.IJDR_386_16. [69] Zhang X, Chen J, Pei X, et al.Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8[J]. ACS Appl Mater Interfaces, 2017, 9(30):25171-25183. DOI: 10.1021/acsami.7b07800. [70] Fardjahromi MA, Ejeian F, Razmjou A, et al.Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating[J]. Mater Sci Eng C Mater Biol Appl, 2021, 123:111972. DOI: 10.1016/j.msec.2021.111972. [71] Wang L, Dai F, Yang Y, et al.Zeolitic imidazolate framework-8 with encapsulated naringin synergistically improves antibacterial and osteogenic properties of Ti implants for osseointegration[J]. ACS Biomater Sci Eng, 2022, 8(9):3797-3809. DOI: 10.1021/acsbiomaterials.2c00154. [72] Li X, Xu M, Geng Z, et al.Novel pH-responsive CaO(2)@ZIF-67-HA-ADH coating that efficiently enhances the antimicrobial, osteogenic, and angiogenic properties of titanium implants[J]. ACS Appl Mater Interfaces, 2023, 15(36):42965-42980. DOI: 10.1021/acsami.3c08233. [73] 张玉英. 口腔微生态pH平衡与龋病牙周炎相关性研究[D].青岛:青岛大学, 2015. |
[1] | Chen Gang. Analysis of implant survival rates at different subantral residual bone heights in simultaneous implant placement with lateral window technique for sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2025, 29(6): 531-536. |
[2] | Liu Qiqi, Zhao Yujia, Qiu Lin, Hao Junjiang, Su Hanqi, Han Zekui, Wang Xinyu, Su Yucheng. Effect of different sandblasting parameters on the surface roughness of medical-grade Grade 4 pure titanium [J]. Chinese Journal of Oral Implantology, 2025, 29(6): 555-560. |
[3] | Guo Yixin, Xia Wei, Wang Tongfei, Wang Junting, Pi Tiantian, Deng Rongna, Liang Meiqi, Rong Mingdeng, Zeng Yan. Timing considerations and clinical insights for attached gingival augmentation before implant restoration in the mandibular posterior region [J]. Chinese Journal of Oral Implantology, 2025, 29(6): 568-573. |
[4] | Chen Gang. Clinical retrospective study of bone ring technique for 3-dimensional bone augmentation in implant restoration [J]. Chinese Journal of Oral Implantology, 2024, 29(5): 429-434. |
[5] | Gao Ming, Niu Lixuan, Zhu Yibo. Clinical and histologic evaluation of autogenous dentin blocks for alveolar ridge augmentation [J]. Chinese Journal of Oral Implantology, 2024, 29(5): 435-439. |
[6] | Du Aobo, Man Yi. Therapeutic strategy of staged bone augmentation in the esthetic zone combined with microsurgical apical surgery on adjacent teeth: clinical diagnosis and treatment process and case study [J]. Chinese Journal of Oral Implantology, 2024, 29(5): 440-444. |
[7] | Chai Haoran, Liu Yi, Wang Zunshuo, Lang Zheyu, Li Chenhui, Zhu Shenghui, Zhang Xuepu, Zhang Yue. A survey of the willingness and influencing factors for dental implants among middle-aged and elderly patients with missing teeth in five cities of Liaoning [J]. Chinese Journal of Oral Implantology, 2024, 29(5): 467-473. |
[8] | Zhong Zhitong, Huang Min, Wang Jing, Shen Qinyuan, Wu Runfa. Clinical evaluation of collagen sponge for augmenting keratinized gingiva around dental implants [J]. Chinese Journal of Oral Implantology, 2024, 29(5): 474-479. |
[9] | Dai Yuwei, Lan Rong, Wu Yiqun, Wang Feng. Current status and research progress in dental implant treatment for alveolar cleft patients [J]. Chinese Journal of Oral Implantology, 2024, 29(5): 486-491. |
[10] | Tang Yiman, Qiu Lixin. Clinical considerations of organ transplant patients receiving implant therapy [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 297-302. |
[11] | Liu Zhonghao, Dong Kai. Risks and countermeasures of dental implant treatment in osteoporosis patients [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 303-310. |
[12] | Zhao Guoqiang, Song Yingliang. Animal experiment of prognosis of immediate implant placement and restoration in individuals with T2DM [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 311-319. |
[13] | Chen Li, Fang Ming, Zhang Yanting, Zhang Xiaolin, Liu Qing, Zheng Zhaohui, Zhou Wei. Risk factor analysis and treatment strategies for oral implant restoration in patients with Sjögren syndrome [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 320-327. |
[14] | Zhang Yanting, Wang Wei, Chen Li, Zhao Wen, Zhou Wei. Perioperative risk assessment and management of oral implant restoration in ASA Ⅲ cardiovascular disease patients [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 328-335. |
[15] | Qiu Yun, Wang Yulan, Zhang Yufeng. Impact of osteoporosis on dental implantation and related clinical considerations [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 336-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||