Chinese Journal of Oral Implantology ›› 2024, Vol. 29 ›› Issue (4): 391-397.DOI: 10.12337/zgkqzzxzz.2024.08.016
• Reviews • Previous Articles
Gong Jing, Bo Meng, Fang Jiao, Wang Lin
Received:
2024-04-03
Online:
2024-08-30
Published:
2024-08-16
Contact:
Fang Jiao, Email: Supported by:
Gong Jing, Bo Meng, Fang Jiao, Wang Lin. Strategies for the use of photothermal therapy in peri-implant diseases[J]. Chinese Journal of Oral Implantology, 2024, 29(4): 391-397.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2024.08.016
[1] Apaza-Bedoya K, Galarraga-Vinueza ME, Correa BB, et al.Prevalence, risk indicators, and clinical characteristics of peri-implant mucositis and peri-implantitis for an internal conical connection implant system: a multicenter cross-sectional study[J]. J Periodontol, 2024, 95(6):582-593. DOI: 10.1002/JPER.23-0355. [2] Ramanauskaite A, Juodzbalys G.Diagnostic principles of peri-implantitis: a systematic review and guidelines for peri-implantitis diagnosis proposal[J]. J Oral Maxillofac Res, 2016, 7(3):e8. DOI: 10.5037/jomr.2016.7308. [3] Ramanauskaite A, Becker K, Schwarz F.Clinical characteristics of peri-implant mucositis and peri-implantitis[J]. Clin Oral Implants Res, 2018, 29(6): 551-556.DOI: 10.1111/clr.13152. [4] Schwarz F, Derks J, Monje A, et al.Peri-implantitis[J]. J Periodontol, 2018, 89(Suppl 1):S267-S290. DOI: 10.1002/JPER.16-0350. [5] Lee CT, Huang YW, Zhu L, et al.Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis[J]. J Dent. 2017,62:1-12. DOI: 10.1016/j.jdent.2017.04.011. [6] Heitz-Mayfield L J, Lang N P. Comparative biology of chronic and aggressive periodontitis vs. Peri-implantitis[J]. Periodontol 2000, 2010, 53: 167-181.DOI: 10.1111/j.1600-0757.2010.00348.x. [7] Li D, Tan X, Zheng L, et al.A dual-antioxidative coating on transmucosal component of implant to repair connective tissue barrier for treatment of peri-implantitis[J]. Adv Healthc Mater, 2023, 12(30):e2301733. DOI: 10.1002/adhm.202301733. [8] Wang H, Liu Y, Li W, et al.Microbiota in gingival crevicular fluid before and after mechanical debridement with antimicrobial photodynamic therapy in peri-implantitis[J]. Front Cell Infect Microbiol, 2021, 11:777627. DOI: 10.3389/fcimb.2021.777627. [9] Chen Y, Gao Y, Chen Y, et al.Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment[J]. J Control Release.2020,328:251-262. DOI: 10.1016/j.jconrel.2020.08.055. [10] Lin J, He Z, Liu F, et al.Hybrid hydrogels for synergistic periodontal antibacterial treatment with sustained drug release and NIR-responsive photothermal effect[J]. Int J Nanomedicine, 2020, 15:5377-5387. DOI: 10.2147/IJN.S248538. [11] Geng B, Li Y, Hu J, et al.Graphitic-N-doped graphene quantum dots for photothermal eradication of multidrug-resistant bacteria in the second near-infrared window[J]. J Mater Chem B, 2022, 10(17):3357-3365. DOI: 10.1039/d2tb00192f. [12] Yin Q, Tan L, Lang Q, et al.Plasmonic molybdenum oxide nanosheets supported silver nanocubes for enhanced near-infrared antibacterial activity: synergism of photothermal effect, silver release and photocatalytic reactions[J]. Applied Catalysis B: Environmental, 2018, 224: 671-680.DOI: 10.1016/J.apcatb.2017.11.024. [13] Wang J, Xuan J, Liu Y, et al.NIR-dependent photothermal-photodynamic synergistic antibacterial mechanism for titanium carbide nanosheets intercalated and delaminated by tetramethylammonium hydroxide[J]. Biomater Adv, 2023, 152:213492. DOI: 10.1016/j.bioadv.2023.213492. [14] Qu Y, Zhu X, Kong R, et al. Dual-functional antibacterial hybrid film with antifouling and NIR-activated bactericidal properties [J]. Composites,Part B: Engineering, 2022, 244(9): 110143.1-110143.10. [15] Tuchin VV, Genina EA, Tuchina ES, et al.Optical clearing of tissues: issues of antimicrobial phototherapy and drug delivery[J]. Adv Drug Deliv Rev, 2022, 180:114037. DOI: 10.1016/j.addr.2021.114037. [16] Li J, Zhang W, Ji W, et al.Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications[J]. J Mater Chem B, 2021, 9(38):7909-7926. DOI: 10.1039/d1tb01310f. [17] Fuzil N S, Othman N H, Alias N H, et al.A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production[J].Desalination,2021,517:115259.DOI: 10.1016/J. AESAL.2021.115295. [18] Xu Y, Wang K, Zhao S, et al.Rough surface NiFe2O4@Au/polydopamine with a magnetic field enhanced photothermal antibacterial effect[J]. Chemical Engineering Journal, 2022, 437: 135282.DOI: 10.1016/j.cej.2022.135282. [19] Chen Q, Li S, Zhao W, et al.A rapid-triggered approach towards antibacterial hydrogel wound dressing with synergic photothermal and sterilization profiles[J]. Biomater Adv, 2022, 138:212873. DOI: 10.1016/j.bioadv.2022.212873. [20] Bermúdez-Jiménez C, Romney MG, Roa-Flores SA, et al.Hydrogel-embedded gold nanorods activated by plasmonic photothermy with potent antimicrobial activity[J]. Nanomedicine, 2019, 22:102093. DOI: 10.1016/j.nano.2019.102093. [21] Shao L, Majumder S, Liu Z, et al.Light activation of gold nanorods but not gold nanospheres enhance antibacterial effect through photodynamic and photothermal mechanisms[J]. J Photochem Photobiol B. 2022, 231:112450. DOI: 10.1016/j.jphotobiol.2022.112450. [22] Li J, Pan G, Zyryanov GV, et al.Positively charged semiconductor conjugated polymer nanomaterials with photothermal activity for antibacterial and antibiofilm activities in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2023, 15(34):40864-40876. DOI: 10.1021/acsami.3c00556. [23] He S, Jiang Y, Li J, et al.Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer[J]. Angew Chem Int Ed Engl, 2020, 59(26):10633-10638. DOI: 10.1002/anie.202003004. [24] Mei L, Lin C, Cao F, et al.Amino-functionalized graphene oxide for the capture and photothermal inhibition of bacteria[J]. ACS Applied Nano Materials, 2019, 2(5): 2902-2908.DOI:10.1021/acsanm.9b00348. [25] Xin Q, Shah H, Nawaz A, et al.Antibacterial carbon-based nanomaterials[J]. Adv Mater, 2019, 31(45):e1804838. DOI: 10.1002/adma.201804838. [26] Zhang C, Wang K, Guo X, et al.A cationic conjugated polymer with high 808 nm NIR-triggered photothermal conversion for antibacterial treatment[J]. Journal of Materials Chemistry C, 2022, 10(7): 2600-2607. [27] He Y, Liao S, Wang Y.Photothermal polymers in near infrared window[J]. Chinese Journal of Chemistry, 2021, 39(6): 1435-1442.DOI: 10.1002/cjoc.202000637. [28] Zhou B, Li Y, Niu G, et al.Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer[J]. ACS Appl Mater Interfaces, 2016, 8(44):29899-29905. DOI: 10.1021/acsami.6b07838. [29] Bao LH, Liu ZH.Near-infrared absorption photothermal conversion polyurethane film for energy storage[J]. Journal of Polymer Research, 2021, 28:1-10.DOI:10.1007/s10965-020-02393-x. [30] Qiu F, Gong J, Tong G, et al.Near-infrared light-induced polymerizations: mechanisms and applications[J]. Chempluschem, 2024, 89(6):e202300782. DOI: 10.1002/cplu.202300782. [31] Chen Y, Li L, Chen W, et al.Near-infrared small molecular fluorescent dyes for photothermal therapy[J]. Chinese Chemical Letters, 2019, 30(7): 1353-1360. [32] Thakur MK, Gupta A, Ghosh S, et al.Graphene-conjugated upconversion nanoparticles as fluorescence-tuned photothermal nanoheaters for desalination[J]. ACS Appl Nano Mater, 2019, 2(4): 2250-2259. DOI: DOI10.1021/acsanm.9b00186. [33] Li Y, Wang X, Gao L, et al.Aptamer-conjugated gold nanostars for targeted cancer photothermal therapy[J]. Journal of Materials Science, 2018, 53(20): 14138-14148.DOI: 10.1007/s10853-018-2668-7 [34] Panikkanvalappil SR, Hooshmand N, El-Sayed MA.Intracellular assembly of nuclear-targeted gold nanosphere enables selective plasmonic photothermal therapy of cancer by shifting their absorption wavelength toward near-infrared region[J]. Bioconjug Chem, 2017, 28(9):2452-2460. DOI: 10.1021/acs.bioconjchem.7b00427. [35] Shen J, Liu J, Fan X, et al.Unveiling the antibacterial strategies and mechanisms of MoS(2): a comprehensive analysis and future directions[J]. Biomater Sci, 2024, 12(3):596-620. DOI: 10.1039/d3bm01030a. [36] Oh SL.Peri-Implantitis associated with a pre-existing pathology[J]. J Oral Implantol, 2017, 43(3):232-236. DOI: 10.1563/aaid-joi-D-16-00211. [37] Sánchez-Martos R, Samman A, Bouazza-Juanes K, et al.Clinical effect of diode laser on peri-implant tissues during non-surgical peri-implant mucositis therapy: randomized controlled clinical study[J]. J Clin Exp Dent, 2020, 12(1):e13-e21. DOI: 10.4317/medoral.56424. [38] Aimetti M, Mariani GM, Ferrarotti F, et al.Adjunctive efficacy of diode laser in the treatment of peri-implant mucositis with mechanical therapy: a randomized clinical trial[J]. Clin Oral Implants Res, 2019, 30(5):429-438. DOI: 10.1111/clr.13428. [39] Sánchez-Martos R, Kronkah NA, Arias-Herrera S.Comparison of photothermal and photodynamic diode laser therapy in patients with peri-implant mucositis: a systematic review[J]. J Clin Exp Dent. 2023, 15(9):e760-e772. DOI: 10.4317/jced.60711. [40] Chen Z, Wang Z, Qiu W, et al.Overview of antibacterial strategies of dental implant materials for the prevention of peri-implantitis[J]. Bioconjug Chem, 2021, 32(4):627-638. DOI: 10.1021/acs.bioconjchem.1c00129. [41] Xu B, Li Z, Ye Q, et al.Mild photothermal effect of titania nanotubes array as a promising solution for peri-implantitis[J]. Materials Design, 2022, 217:110641. DOI: 10.1016/j.matdes.2022.110641. [42] Li B, Liu F, Ye J, et al.Regulation of macrophage polarization through periodic photo-thermal treatment to facilitate osteogenesis[J]. Small, 2022, 18(38):e2202691. DOI: 10.1002/smll.202202691. [43] Konishi D, Hirata E, Takano Y, et al.Near-infrared light-boosted antimicrobial activity of minocycline/hyaluronan/carbon nanohorn composite toward peri-implantitis treatments[J]. Nanoscale, 2024,16(28):13425-13434. DOI: 10.1039/d4nr01036a. [44] Wu Y, Liao Q, Wu L, et al.ZnL(2)-BPs integrated bone scaffold under sequential photothermal mediation: a win-win strategy delivering antibacterial therapy and fostering osteogenesis thereafter[J]. ACS Nano, 2021, 15(11):17854-17869. DOI: 10.1021/acsnano.1c06062. [45] Gao P, Zuo Y, Yang Y, et al.Multifunctional photothermal PB@EGCG-Sr nanocoating design on titanium surface: to achieve short-term rapid osseointegration and on-demand photothermal long-term osteogenesis[J]. Chemical Engineering Journal, 2023, 474:145608. DOI: 10.1016/j.cej.2023.145608. [46] Xiao F, Huang CX, Dai JH, et al.In situ fabrication of NIR-II responsive TiO2、bio-metasurface for photothermal antibacterial and enhanced osseointegration[J]. Ceramics International, 2024, 50(16): 27689-27698.DOI: 10.1016/j.ceramint.2024.05.066. [47] Wang Y, Miron RJ, Zhang X, et al.Nanocages and cell-membrane display technology as smart biomaterials[J]. Periodontol 2000, 2024, 94(1):180-191. DOI: 10.1111/prd.12514. [48] Guo Q, Li P, Zhang Y, et al.Polydopamine-curcumin coating of titanium for remarkable antibacterial activity via synergistic photodynamic and photothermal properties[J]. Photochem Photobiol, 2024, 100(3):699-711. DOI: 10.1111/php.13870. [49] Lu S, Li R, Chai M, et al.Nanostructured Cu-doped TiO(2) with photothermal effect for prevention of implant-associated infection[J]. Colloids Surf B Biointerfaces, 2022, 217:112695. DOI: 10.1016/j.colsurfb.2022.112695. [50] Xu K, Yuan Z, Ding Y, et al.Near-infrared light triggered multi-mode synergetic therapy for improving antibacterial and osteogenic activity of titanium implants[J]. Applied Materials Today, 2021, 24:101155.DOI:10.1016/j.apmt.2021.101155. [51] Yu YL, Wu JJ, Lin CC, et al.Elimination of methicillin-resistant staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration[J]. Mil Med Res, 2023, 10(1):21. DOI: 10.1186/s40779-023-00454-y. [52] Xue Y, Zhang L, Liu F, et al.Fluoride releasing photothermal responsive TiO(2) matrices for antibiosis, biosealing and bone regeneration[J]. J Control Release, 2023, 363:657-669. DOI: 10.1016/j.jconrel.2023.10.016. [53] Shen L, Hu J, Yuan Y, et al.Photothermal-promoted multi-functional gallic acid grafted chitosan hydrogel containing tannic acid miniaturized particles for peri-implantitis[J]. Int J Biol Macromol, 2023, 253(Pt 6):127366. DOI: 10.1016/j.ijbiomac.2023.127366. [54] Jiang Y, Hua Z, Geng Q, et al.Carbon quantum dots carrying antibiotics for treating dental implant bacterial infections following photothermal therapy[J]. Nano, 2024, 19(1): 2450004. DOI:10.1142/S1793292024500048. [55] Xiao L, Feng M, Chen C, et al.Microenvironment-regulating drug delivery nanoparticles for treating and preventing typical biofilm-induced oral diseases[J]. Adv Mater, 2023 :e2304982. DOI: 10.1002/adma.202304982. [56] Zhang W, Wang XL, Ma GaoQ,et al.Fluorescence and photothermal dual-readout phthalocyanine-fluorescein conjugate for detection and photothermal sterilization of anaerobic bacteria[J].Sensors Actuators: B Chem,2023.392:134042.DOI:10.1016/j.snb.2023.134042. [57] Ma L, Zhou Y, Zhang Z, et al. Multifunctional bioactive Nd-Ca-Si glasses for fluorescence thermometry, photothermal therapy,burn tissue repair[J]. Sci Adv, 2020, 6(32):eabb1311. DOI: 10.1126/sciadv.abb1311. |
[1] | Chen Zhenqi, Yan Qi, Chen Yan, Shi Bin. Biological complications of butt-joint dental implants: a retrospective case analysis [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 352-357. |
[2] | Yang Ting, Hu Wenjie. Strategies for implant surface decontamination in therapy of peri-implantitis [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 385-390. |
[3] | Xu Shulan, Zhu Yuanxi. Treatment decision-making and prognosis assessment of peri-implantitis [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 394-401. |
[4] | Yan Fuhua, Song Shiyuan. Recent advances in the factors affecting the pathogenesis, diagnosis, and treatment of peri-implantitis [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 402-409. |
[5] | Ou Yanjing, Lu Jie, Chen Jiang. Inhibition of Porphyromonas gingivalis by hydrophilic titanium surface modified with cinnamaldehyde [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 410-416. |
[6] | Sun Fei, Wang Cui, Hu Wenjie. Evaluation of the clinical effects of Er, Cr: YSGG laser in the treatment of peri-implantitis [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 417-423. |
[7] | Lin Zhihui, Wang Xi, Man Yi. Application of platform technology in the treatment of peri-implantitis combined with implant infraposition in the aesthetic zone: a case report and literature review [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 424-429. |
[8] | Song Jiaying, Chen Zhuofan, Huang Baoxin. Follow-up maintenance compliance and related factors in implant restoration patients: current status and outlook [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 430-436. |
[9] | Dong Xiaoxiao. Surface decontamination in peri-implantitis management [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 437-443. |
[10] | Yang Bo, Han Zekui, Dai Haoran, Zhang Liang, Zang Yixin, Wang Xinyu, Su Yucheng. Study on the preparation and antibacterial properties of polytetrafluoroethylene film modified customized titanium mesh [J]. Chinese Journal of Oral Implantology, 2023, 28(6): 451-459. |
[11] | Cai Guoxin. A review of the application of osseointegrated implant removal techniques [J]. Chinese Journal of Oral Implantology, 2023, 28(4): 279-284. |
[12] | Tang Li, Chen Liyi. Research progress in reducing the residual excess cement in implant-supported cement-retained crown restorations [J]. Chinese Journal of Oral Implantology, 2023, 28(4): 290-294. |
[13] | Luo Guisheng, Liu Yumeng, Wang Penglai, Yuan Changyong. Research progress on trace elements modification of PEEK implant [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 109-113. |
[14] | Cheng Wen, Ma Xiaoting, Shen Yajie, Lv Shouyin, Shao Bo. Research progress on nano-silver antibacterial materials in the application in oral implantology [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 40-46. |
[15] | Chinese Society of Oral Implantology. Expert consensus on complications of sinus floor elevation:peri-implant disease (first edition) [J]. Chinese Journal of Oral Implantology, 2022, 27(3): 135-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||