Chinese Journal of Oral Implantology ›› 2024, Vol. 29 ›› Issue (4): 371-377.DOI: 10.12337/zgkqzzxzz.2024.08.013
• Reviews • Previous Articles Next Articles
Li Xin1, Liu Kaizheng2, Wu Shiyu3, Liu Yuanxiang3, Huang Baoxin3, Qiao Wei4, Pan Haobo2, Chen Zhuofan3
Received:
2023-09-11
Online:
2024-08-30
Published:
2024-08-16
Contact:
Chen Zhuofan, Email: Supported by:
Li Xin, Liu Kaizheng, Wu Shiyu, Liu Yuanxiang, Huang Baoxin, Qiao Wei, Pan Haobo, Chen Zhuofan. Recent progress in bone regenerative materials for implant dentistry[J]. Chinese Journal of Oral Implantology, 2024, 29(4): 371-377.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2024.08.013
[1] Yu B, Wang CY.Osteoporosis and periodontal diseases - an update on their association and mechanistic links[J]. Periodontol 2000, 2022,89(1):99-113. DOI: 10.1111/prd.12422. [2] Graves DT, Ding Z, Yang Y.The impact of diabetes on periodontal diseases[J]. Periodontol 2000, 2020,82(1):214-224. DOI: 10.1111/prd.12318. [3] Ebersole JL, Graves CL, Gonzalez OA,et al.Aging, inflammation, immunity and periodontal disease[J].Periodontology 2000, 2016, 72(1):54-75.DOI:10.1111/prd.12135. [4] 中华口腔医学会口腔种植专业委员会.上颌窦底提升中骨增量材料的专家共识:自体骨[J]. 中国口腔种植学杂志, 2022, 27(5):269-273.DOI: 10.12337/zgkqzzxzz. 2022.10.002. [5] Tang G, Liu Z, Liu Y, et al.Recent trends in the development of bone regenerative biomaterials[J]. Front Cell Dev Biol, 2021,9:665813. DOI: 10.3389/fcell.2021.665813. [6] Kolk A, Handschel J, Drescher W, et al.Current trends and future perspectives of bone substitute materials -from space holders to innovative biomaterials[J]. J Craniomaxillofac Surg, 2012,40(8):706-718. DOI: 10.1016/j.jcms.2012.01.002. [7] Koons GL, Diba M, Mikos AG .Materials design for bone-tissue engineering[J].Nature Reviews Materials, 2020, 5(Suppl 2):584-603.DOI:10.1038/s41578-020-0204-2. [8] Lin W, Li Q, Zhang D, et al.Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution[J]. Bone Res, 2021,9(1):17. DOI: 10.1038/s41413-021-00141-5. [9] Aghaloo TL, Chaichanasakul T, Bezouglaia O, et al.Osteogenic potential of mandibular vs. long-bone marrow stromal cells[J]. J Dent Res, 2010,89(11):1293-1298. DOI: 10.1177/0022034510378427. [10] Omi M, Mishina Y.Roles of osteoclasts in alveolar bone remodeling[J]. Genesis, 2022,60(8-9):e23490. DOI: 10.1002/dvg.23490. [11] Zhou S, Yang Y, Ha N, et al.The specific morphological features of alveolar bone[J]. J Craniofac Surg, 2018,29(5):1216-1219. DOI: 10.1097/SCS.0000000000004395. [12] Akintoye SO.The distinctive jaw and alveolar bone regeneration[J]. Oral Dis, 2018,24(1-2):49-51. DOI: 10.1111/odi.12761. [13] Donos N, Akcali A, Padhye N, et al.Bone regeneration in implant dentistry: which are the factors affecting the clinical outcome?[J]. Periodontol 2000, 2023,93(1):26-55. DOI: 10.1111/prd.12518. [14] Chen S, Guo Y, Liu R, et al.Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration[J]. Colloids Surf B Biointerfaces, 2018,164:58-69. DOI: 10.1016/j.colsurfb.2018.01.022. [15] Wang K, Zhou C, Hong Y, et al.A review of protein adsorption on bioceramics[J]. Interface Focus, 2012,2(3):259-277. DOI: 10.1098/rsfs.2012.0012. [16] Toledano M, Carrasco-Carmona Á, Medina-Castillo AL, et al.Protein adsorption and bioactivity of functionalized electrospun membranes for bone regeneration[J]. J Dent, 2020,102:103473. DOI: 10.1016/j.jdent.2020.103473. [17] Lin Z, Wu J, Qiao W, et al.Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration[J]. Biomaterials, 2018,174:1-16. DOI: 10.1016/j.biomaterials.2018.05.011. [18] Wang X, Xue J, Ma B, et al.Black bioceramics: combining regeneration with therapy[J]. Adv Mater, 2020, 32(48):e2005140. DOI: 10.1002/adma.202005140. [19] Kim J,Pan H. Effects of magnesium alloy corrosion on biological response-perspectives of metal-cell interaction[J]. Progress in Materials Science,2023,133(4): 101039.1-101039.63. DOI: 10.1016/j.pmatsci.2022.101039. [20] Li W, Qiao W, Liu X, et al.Biomimicking bone-implant interface facilitates the bioadaption of a new degradable magnesium alloy to the bone tissue microenvironment[J]. Adv Sci (Weinh), 2021,8(23):e2102035. DOI: 10.1002/advs.202102035. [21] Wei S, Ma JX, Xu L, et al.Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020,7(1):54. DOI: 10.1186/s40779-020-00280-6. [22] 邓廉夫, 燕宇飞. 骨修复材料的研究现状与进展[J].中国修复重建外科杂志,2018,32(7):815-820. DOI: 10.7507/1002-1892.201806028. [23] Liu Y, Peng L, Li L, et al.3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model[J]. Biomaterials, 2021,279:121216. DOI: 10.1016/j.biomaterials.2021.121216. [24] Shen J, Chen B, Zhai X, et al.Stepwise 3D-spatio-temporal magnesium cationic niche: nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification[J]. Bioact Mater, 2021,6(2):503-519. DOI: 10.1016/j.bioactmat.2020.08.025. [25] Shen J, Wang W, Zhai X, et al.3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration[J]. Applied Materials Today, 2019,16:493-507.DOI:10.1016/j.apmt.2019.07.012. [26] Zhao W, Yue C, Liu L, et al.Research progress of shape memory polymer and 4D printing in biomedical application[J]. Adv Healthc Mater, 2023,12(16):e2201975. DOI: 10.1002/adhm.202201975. [27] Li Z, Huang B, Mai S, et al.Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells[J]. Sci Technol Adv Mater, 2015,16(3):035006. DOI: 10.1088/1468-6996/16/3/035006. [28] Liu R, Qiao W, Huang B, et al.Fluorination enhances the osteogenic capacity of porcine hydroxyapatite[J]. Tissue Eng Part A, 2018,24(15-16):1207-1217. DOI: 10.1089/ten.TEA.2017.0381. [29] Qiao W, Liu R, Li Z, et al.Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration[J]. Biomater Sci, 2018,6(11):2951-2964. DOI: 10.1039/c8bm00910d. [30] Chen Z, Klein T, Murray RZ,et al.Osteoimmunomodulation for the development of advanced bone biomaterials[J].Materials Today, 2016, 19(6):304-321.DOI:10.1016/j.mattod.2015.11.004. [31] Wang Y, Zhang H, Hu Y,et al.Bone repair biomaterials: a perspective from immunomodulation[J]. Adv Funct Materials, 2022,32:2208639. [32] Qiao W, Xie H, Fang J, et al.Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration[J]. Biomaterials, 2021,276:121038. DOI: 10.1016/j.biomaterials.2021.121038. [33] Huang P, Xu J, Xie L, et al.Improving hard metal implant and soft tissue integration by modulating the "inflammatory-fibrous complex" response[J]. Bioact Mater, 2023,20:42-52. DOI: 10.1016/j.bioactmat.2022.05.013. [34] Yang B, Pang X, Li Z, et al.Immunomodulation in the treatment of periodontitis: progress and perspectives[J]. Front Immunol, 2021,12:781378. DOI: 10.3389/fimmu.2021.781378. [35] Marrella A, Lee TY, Lee DH, et al.Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration[J]. Mater Today (Kidlington), 2018,21(4):362-376. DOI: 10.1016/j.mattod.2017.10.005. [36] Zhang H, Zhang M, Zhai D, et al.Polyhedron-like biomaterials for innervated and vascularized bone regeneration[J]. Adv Mater, 2023,35(42):e2302716. DOI: 10.1002/adma.202302716. [37] Li Y, Fraser D, Mereness J, et al.Tissue engineered neurovascularization strategies for craniofacial tissue regeneration[J]. ACS Appl Bio Mater, 2022,5(1):20-39. DOI: 10.1021/acsabm.1c00979. [38] Xu Z, Kusumbe AP, Cai H, et al.Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2023,111(7):1434-1446. DOI: 10.1002/jbm.b.35243. [39] Meyers CA, Lee S, Sono T, et al.A neurotrophic mechanism directs sensory nerve transit in cranial bone[J]. Cell Rep, 2020,31(8):107696. DOI: 10.1016/j.celrep.2020.107696. [40] Zhang Z, Wang F, Huang X, et al.Engineered sensory nerve guides self-adaptive bone healing via NGF-TrkA signaling pathway[J]. Adv Sci (Weinh), 2023,10(10):e2206155. DOI: 10.1002/advs.202206155. [41] Newman H, Shih YV, Varghese S.Resolution of inflammation in bone regeneration: from understandings to therapeutic applications[J]. Biomaterials, 2021,277:121114. DOI: 10.1016/j.biomaterials.2021.121114. [42] Tian P, Zhao L, Kim J, et al.Dual stimulus responsive borosilicate glass (BSG) scaffolds promote diabetic alveolar bone defectsrepair by modulating macrophage phenotype[J]. Bioact Mater, 2023,26:231-248. DOI: 10.1016/j.bioactmat.2023.02.023. [43] Almubarak S, Nethercott H, Freeberg M, et al.Tissue engineering strategies for promoting vascularized bone regeneration[J]. Bone, 2016,83:197-209. DOI: 10.1016/j.bone.2015.11.011. [44] Qiao W, Pan D, Zheng Y, et al.Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models[J]. Nat Commun, 2022,13(1):535. DOI: 10.1038/s41467-022-28203-0. [45] Qiao W, Wong K, Shen J, et al.TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesiumion-induced bone regeneration[J]. Nat Commun, 2021,12(1):2885. DOI: 10.1038/s41467-021-23005-2. [46] Wu S, Xia B, Mai S, et al.Sodium fluoride under dose range of 2.4-24 μM, a promising osteoimmunomodulatory agent for vascularized bone formation[J]. ACS Biomater Sci Eng, 2019,5(2):817-830. DOI: 10.1021/acsbiomaterials.8b00570. [47] Abbasi N,Hamlet S,Love RM,et al.Porous scaffolds for bone regeneration[J]. J of Sci: Adv Mater and Devic,2020,5(1):1-9.DOI:10.1016/j.jsamd.2020.01.007. [48] Li X, Tsui KH, Tsoi J, et al.A nanostructured anti-biofilm surface widens the efficacy against spindle-shaped and chain-forming rod-like bacteria[J]. Nanoscale, 2020,12(36):18864-18874. DOI: 10.1039/d0nr03809a. [49] Yang M, Qiu S, Coy E, et al.NIR-responsive TiO(2) biometasurfaces: toward in situ photodynamic antibacterial therapy for biomedical implants[J]. Adv Mater, 2022,34(6):e2106314. DOI: 10.1002/adma.202106314. [50] Hannink G, Arts JJ.Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?[J].Injury,2011,42(Suppl 2):S22-S25. DOI: 10.1016/j.injury.2011.06.008. [51] Liu Q, Chen Z, Gu H, et al.Preparation and characterization of fluorinated porcine hydroxyapatite[J]. Dent Mater J, 2012,31(5):742-750. DOI: 10.4012/dmj.2012-052. [52] Qiao W, Liu Q, Li Z, et al.Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride[J]. Sci Technol Adv Mater, 2017,18(1):110-121. DOI: 10.1080/14686996.2016.1263140. [53] Storm C, Pastore JJ, MacKintosh FC, et al. Nonlinear elasticity in biological gels[J]. Nature, 2005,435(7039):191-194. DOI: 10.1038/nature03521. [54] Chaudhuri O, Cooper-White J, Janmey PA, et al.Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020,584(7822):535-546. DOI: 10.1038/s41586-020-2612-2. [55] Zimmermann EA, Schaible E, Bale H, et al.Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales[J]. Proc Natl Acad Sci USA, 2011,108(35):14416-14421. DOI: 10.1073/pnas.1107966108. [56] Saraswathibhatla A, Indana D, Chaudhuri O.Cell-extracellular matrix mechanotransduction in 3D[J]. Nat Rev Mol Cell Biol, 2023,24(7):495-516. DOI: 10.1038/s41580-023-00583-1. [57] Das RK, Gocheva V, Hammink R, et al.Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels[J]. Nat Mater, 2016,15(3):318-325. DOI: 10.1038/nmat4483. [58] Chaudhuri O, Gu L, Klumpers D, et al.Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J]. Nat Mater, 2016,15(3):326-334. DOI: 10.1038/nmat4489. [59] Elgali I, Omar O, Dahlin C, et al.Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017,125(5):315-337. DOI: 10.1111/eos.12364. [60] Zhang C, Chen Z,Liu, et al. 3D-printed pre-tapped-hole scaffolds facilitate one-step surgery of predictable alveolar bone augmentation and simultaneous dental implantation[J].Composites, Part B. Engineering, 2022, 229(15):109461.1-109461.12. [61] Ferraz MP.Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials[J]. Materials (Basel), 2023,16(11):4117. DOI: 10.3390/ma16114117. [62] Lee SW, Kim SG, Balázsi C, et al.Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012,113(3):348-355. DOI: 10.1016/j.tripleo.2011.03.033. [63] Garot C, Bettega G, Picart C.Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics[J]. Adv Funct Mater, 2020,31(5): 2006967.DOI: 10.1002/adfm.202006967. |
[1] | Tang Yiman, Qiu Lixin. Clinical considerations of organ transplant patients receiving implant therapy [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 297-302. |
[2] | Liu Zhonghao, Dong Kai. Risks and countermeasures of dental implant treatment in osteoporosis patients [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 303-310. |
[3] | Zhao Guoqiang, Song Yingliang. Animal experiment of prognosis of immediate implant placement and restoration in individuals with T2DM [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 311-319. |
[4] | Chen Li, Fang Ming, Zhang Yanting, Zhang Xiaolin, Liu Qing, Zheng Zhaohui, Zhou Wei. Risk factor analysis and treatment strategies for oral implant restoration in patients with Sjögren syndrome [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 320-327. |
[5] | Zhang Yanting, Wang Wei, Chen Li, Zhao Wen, Zhou Wei. Perioperative risk assessment and management of oral implant restoration in ASA Ⅲ cardiovascular disease patients [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 328-335. |
[6] | Qiu Yun, Wang Yulan, Zhang Yufeng. Impact of osteoporosis on dental implantation and related clinical considerations [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 336-341. |
[7] | Zhao Xintong, Meng Weiyan. Research progress on the influence of depression on peri-implant health [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 342-346. |
[8] | Wang Qian, Yuan Quan. The impact of diabetes on the soft tissue seal surrounding dental implants [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 347-351. |
[9] | Wang Yiming, Li Xinru, Teng Weiwei, Ma Junchi, Zhou Libo. Meta-analysis of the accuracy of dental implant robots in preclinical and clinical studies [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 362-370. |
[10] | Yang Ting, Hu Wenjie. Strategies for implant surface decontamination in therapy of peri-implantitis [J]. Chinese Journal of Oral Implantology, 2024, 29(4): 385-390. |
[11] | Geng Chenxin, Liu Yang, Han Dong. Research advances in treatment of tooth agenesis [J]. Chinese Journal of Oral Implantology, 2024, 29(3): 224-230. |
[12] | Wang Mingxi, Gao Shan, Wang Long, Zhou Yongmiao, Tang Chunbo. Oral implantation strategies for patients with ectodermal dysplasia [J]. Chinese Journal of Oral Implantology, 2024, 29(3): 231-235. |
[13] | Chen Jiang, Qiu Yubei. Application and research progress of digital technology in bone augmentation for dental implants [J]. Chinese Journal of Oral Implantology, 2024, 29(3): 252-257. |
[14] | Wang Huaisheng, Wang Xinyu, Han Zekui, Jiang Tingting, Chen He, Liu Lu. Research on mechanical properties of 3D printed titanium mesh with hyperbolic paraboloid morphology and traditional approximate alveolar ridge morphology [J]. Chinese Journal of Oral Implantology, 2024, 29(3): 258-265. |
[15] | Jiang Juanna, Li Junman, Chen Lin, Xie Liangkun. Implant restoration of extended edentulous spaces in the aesthetic zone using autogenous-heterogeneous bone grafting GBR with titanium mesh combined with keratinized tissue augmentation: a case report [J]. Chinese Journal of Oral Implantology, 2024, 29(3): 272-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||