Chinese Journal of Oral Implantology ›› 2021, Vol. 26 ›› Issue (4): 248-252.DOI: 10.12337/zgkqzzxzz.2021.08.008
• Reviews • Previous Articles Next Articles
Zhu Jingxian, Shi Bin, Ji Wei
Received:
2021-06-17
Online:
2021-08-10
Published:
2021-09-08
Contact:
Shi Bin,Email:shibin_dentist@whu.edu.cn,Tel:0086-27-87686222, Ji Wei, Email: wei.ji@whu.edu.cn, Tel:0086-27-87686222
Supported by:
Zhu Jingxian, Shi Bin, Ji Wei. Research updates of periosteal cells in bone defect repair[J]. Chinese Journal of Oral Implantology, 2021, 26(4): 248-252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2021.08.008
[1] Holmes D.Non-union bone fracture: a quicker fix[J]. Nature, 2017,550(7677):S193. DOI: 10.1038/550S193a. [2] Sharma P, Williams R, Monaghan A.Spontaneous mandibular regeneration: another option for mandibular reconstruction in children?[J]. Br J Oral Maxillofac Surg, 2013,51(5):e63-66. DOI: 10.1016/j.bjoms.2012.04.255. [3] Kojimoto H, Yasui N, Goto T, et al.Bone lengthening in rabbits by callus distraction. The role of periosteum and endosteum[J]. J Bone Joint Surg Br, 1988,70(4):543-549. DOI: 10.1302/0301-620X.70B4.3403595. [4] Huang RL, Tremp M, Ho CK, et al.Prefabrication of a functional bone graft with a pedicled periosteal flap as an in vivo bioreactor[J]. Sci Rep, 2017,7(1):18038. DOI: 10.1038/s41598-017-17452-5. [5] Nahian A. Chauhan PR.Histology, periosteum and endosteum. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2021. [6] Duchamp de Lageneste O, Julien A, Abou-Khalil R, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by periostin[J]. Nat Commun, 2018,9(1):773. DOI: 10.1038/s41467-018-03124-z. [7] He X, Bougioukli S, Ortega B, et al.Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone[J]. Bone, 2017,103:12-19. DOI: 10.1016/j.bone.2017.06.008. [8] Ortinau LC, Wang H, Lei K, et al. Identification of functionally distinct Mx1+αSMA+ Periosteal skeletal stem cells[J]. Cell Stem Cell, 2019,25(6):784-796.e5. DOI: 10.1016/j.stem.2019.11.003. [9] Tournaire G, Stegen S, Giacomini G, et al.Nestin-GFP transgene labels skeletal progenitors in the periosteum[J]. Bone, 2020,133:115259. DOI: 10.1016/j.bone.2020.115259. [10] González-Gil AB, Lamo-Espinosa JM, Muiños-López E, et al.Periosteum-derived mesenchymal progenitor cells in engineered implants promote fracture healing in a critical-size defect rat model[J]. J Tissue Eng Regen Med, 2019,13(5):742-752. DOI: 10.1002/term.2821.] [11] Hwang SC, Hwang DS, Kim HY, et al.Development of bone regeneration strategies using human periosteum-derived osteoblasts and oxygen-releasing microparticles in mandibular osteomyelitis model of miniature pig[J]. J Biomed Mater Res A, 2019,107(10):2183-2194. DOI: 10.1002/jbm.a.36728. [12] Ceccarelli G, Presta R, Lupi SM, et al. Evaluation of Poly(Lactic-co-glycolic) acid alone or in combination with hydroxyapatite on human-periosteal cells bone differentiation and in sinus lift treatment[J]. Molecules, 2017,22(12)DOI: 10.3390/molecules22122109. [13] Nagata M, Hoshina H, Li M, et al.A clinical study of alveolar bone tissue engineering with cultured autogenous periosteal cells: coordinated activation of bone formation and resorption[J]. Bone, 2012,50(5):1123-1129. DOI: 10.1016/j.bone.2012.02.631. [14] Leucht P, Kim JB, Amasha R, et al.Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration[J]. Development, 2008,135(17):2845-2854. DOI: 10.1242/dev.023788. [15] Salhotra A, Shah HN, Levi B, et al.Mechanisms of bone development and repair[J]. Nat Rev Mol Cell Biol, 2020,21(11):696-711. DOI: 10.1038/s41580-020-00279-w. [16] Parada C, Chai Y.Mandible and tongue development[J]. Curr Top Dev Biol, 2015,115:31-58. DOI: 10.1016/bs.ctdb.2015.07.023. [17] Ono N, Balani DH, Kronenberg HM.Stem and progenitor cells in skeletal development[J]. Curr Top Dev Biol, 2019,133:1-24. DOI: 10.1016/bs.ctdb.2019.01.006. [18] Runyan CM, Gabrick KS.Biology of bone formation, fracture healing, and distraction osteogenesis[J]. J Craniofac Surg, 2017,28(5):1380-1389. DOI: 10.1097/SCS.0000000000003625. [19] Roberts SJ, van Gastel N, Carmeliet G, et al. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath[J]. Bone, 2015,70:10-18. DOI: 10.1016/j.bone.2014.08.007. [20] Pazzaglia UE, Reguzzoni M, Casati L, et al.Long bone human anlage longitudinal and circumferential growth in the fetal period and comparison with the growth plate cartilage of the postnatal age[J]. Microsc Res Tech, 2019,82(3):190-198. DOI: 10.1002/jemt.23153. [21] Kohara Y, Soeta S, Izu Y, et al.Distribution of type VI collagen in association with osteoblast lineages in the groove of ranvier during rat postnatal development[J]. Ann Anat, 2016,208:58-68. DOI: 10.1016/j.aanat.2016.07.003. [22] Zhu SJ, Choi BH, Huh JY, et al.A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006,101(2):164-169. DOI: 10.1016/j.tripleo.2005.04.006. [23] Stockmann P, Park J, von Wilmowsky C, et al. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources[J]. J Craniomaxillofac Surg, 2012,40(4):310-320. DOI: 10.1016/j.jcms.2011.05.004. [24] Bahney CS, Zondervan RL, Allison P, et al.Cellular biology of fracture healing[J]. J Orthop Res, 2019,37(1):35-50. DOI: 10.1002/jor.24170. [25] Gao B, Deng R, Chai Y, et al.Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration[J]. J Clin Invest, 2019,129(6):2578-2594. DOI: 10.1172/JCI98857. [26] Schlundt C, El Khassawna T, Serra A, et al.Macrophages in bone fracture healing: their essential role in endochondral ossification[J]. Bone, 2018,106:78-89. DOI: 10.1016/j.bone.2015.10.019. [27] Stich S, Loch A, Leinhase I, et al.Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13[J]. Eur J Cell Biol, 2008,87(6):365-376. DOI: 10.1016/j.ejcb.2008.03.009. [28] Colnot C.Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration[J]. J Bone Miner Res, 2009,24(2):274-282. DOI: 10.1359/jbmr.081003. [29] Neagu TP, Ţigliş M, Cocoloş I, et al.The relationship between periosteum and fracture healing[J]. Rom J Morphol Embryol, 2016,57(4):1215-1220. [30] Wang T, Zhang X, Bikle DD.Osteogenic differentiation of periosteal cells during fracture healing[J]. J Cell Physiol, 2017,232(5):913-921. DOI: 10.1002/jcp.25641. [31] Doherty L, Yu J, Wang X, et al.A PDGFRβ-PI3K signaling axis mediates periosteal cell activation during fracture healing[J]. PLoS One, 2019,14(10):e0223846. DOI: 10.1371/journal.pone.0223846. [32] Kegelman CD, Nijsure MP, Moharrer Y, et al.YAP and TAZ promote periosteal osteoblast precursor expansion and differentiation for fracture repair[J]. J Bone Miner Res, 2021,36(1):143-157. DOI: 10.1002/jbmr.4166. [33] Julien A, Perrin S, Duchamp de Lageneste O, et al. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair[J]. Stem Cell Reports, 2020,15(4):955-967. DOI: 10.1016/j.stemcr.2020.08.005. [34] Bolander J, Ji W, Geris L, et al.The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells[J]. Eur Cell Mater, 2016,31:11-25. DOI: 10.22203/ecm.v031a02. [35] Groeneveldt LC, Herpelinck T, Maréchal M, et al.The bone-forming properties of periosteum-derived cells differ between harvest sites[J]. Front Cell Dev Biol, 2020,8:554984. DOI: 10.3389/fcell.2020.554984. [36] Matthews BG, Grcevic D, Wang L, et al.Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing[J]. J Bone Miner Res, 2014,29(5):1283-1294. DOI: 10.1002/jbmr.2140. [37] Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature, 2018,562(7725):133-139. DOI: 10.1038/s41586-018-0554-8. [38] Xia C, Ge Q, Fang L, et al.TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1+ periosteal cells during fracture healing[J]. Cell prolif, 2020,53(11):e12904. DOI: 10.1111/cpr.12904. [39] Kuwahara ST, Serowoky MA, Vakhshori V, et al. Sox9+ messenger cells orchestrate large-scale skeletal regeneration in the mammalian rib[J]. Elife, 2019,8DOI: 10.7554/eLife.40715. [40] Ferretti C, Mattioli-Belmonte M.Periosteum derived stem cells for regenerative medicine proposals: boosting current knowledge[J]. World J Stem Cells, 2014,6(3):266-277. DOI: 10.4252/wjsc.v6.i3.266. [41] Brachtl G,Hochreiter A, Hochmann S, et al.Regenerative potential of periosteum-derived stromal cells [A]. Human Gene Therapy, 2017. 28(12): 89-90. |
[1] | Li Xiaoyu, He Jie, Wang Xueke, Duan Jingyi, Ge Chang, Meng Weiyan. Application of Bio-Oss Collagen with tent pole procedure in vertical bone augmentation of edentulous maxillary posterior area: a case report [J]. Chinese Journal of Oral Implantology, 2023, 28(2): 97-101. |
[2] | Xu Yifan, Ye Ying. The influence of anatomical characteristics of the alveolar bone on the outcome of guided bone regeneration in the aesthetic zone [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 47-52. |
[3] | Deng Lei, Huang Haitao. Progress in the study of osteogenesis after maxillary sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2023, 28(1): 53-57. |
[4] | Ji Ping. Research progress of 3D printing individualized titanium mesh for complex bone augmentation [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 334-339. |
[5] | Shu Qianyi, Su Yucheng. Research advances in the production process of dental collagen membrane [J]. Chinese Journal of Oral Implantology, 2022, 27(6): 358-364. |
[6] | Liu Quan, Chen Shoucheng, Chen Zhuofan. Fluorinated porcine-derived bone substitute: from concept to practice [J]. Chinese Journal of Oral Implantology, 2022, 27(5): 280-284. |
[7] | Pang Liping, Zhong Xinlan, Wang Weian, Li Shuigen. A clinical study on the effect of horizontal bone augmentation with collagen membrane fixation for guided bone regeneration [J]. Chinese Journal of Oral Implantology, 2022, 27(4): 224-228. |
[8] | Wang Meijie, Deng Yue. Resorption of bone graft materials in labial neck of implant after guided bone regeneration in anterior teeth area: a case report and cause analysis [J]. Chinese Journal of Oral Implantology, 2022, 27(3): 156-160. |
[9] | Zhou Libo, Su Yucheng, Li Xinru, Zhang Liqiang, Chen Deping. A systematic review comparing the exposure of customized titanium mesh and conventional titanium mesh after guided bone regeneration [J]. Chinese Journal of Oral Implantology, 2022, 27(2): 112-118. |
[10] | Deng Lei, Huang Haitao. Research progress of mucoperiosteum perforation in implant placement with transalveolar technique for sinus floor elevation [J]. Chinese Journal of Oral Implantology, 2022, 27(1): 45-49. |
[11] | Qi Junnan, Fu Li. The role of macrophages in bone tissue repair and biomaterial integration [J]. Chinese Journal of Oral Implantology, 2022, 27(1): 54-57. |
[12] | Gan Jiawen, Dou Jiaqi, Xu Chenci, Wu Yiqun, Wang Feng. Impact of bone harvesting methods on cell viability of autogenous bone particles in guided bone regeneration [J]. Chinese Journal of Oral Implantology, 2022, 27(1): 58-63. |
[13] | Zhang Liqiang, Liu Yang, Jiang Xin, Wang Zhihui, Xu Shuze, Liu Qian. Engineering realization of customized titanium mesh for bone regeneration by additive manufacturing [J]. Chinese Journal of Oral Implantology, 2021, 26(6): 354-361. |
[14] | Chinese Society of Oral Implantology. Expert consensus on the management of sinus floor elevation mucoperiosteum perforation (first edition) [J]. Chinese Journal of Oral Implantology, 2021, 26(5): 277-281. |
[15] | Dai Junfeng, Yu Qing. The clinical study of alveolar bone grafting in molar area [J]. Chinese Journal of Oral Implantology, 2021, 26(2): 91-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||