[1] Ducommun J, El Kholy K, Rahman L, et al.Analysis of trends in implant therapy at a surgical specialty clinic: patient pool, indications, surgical procedures, and rate of early failures-a 15-year retrospective analysis[J]. Clin Oral Implants Res, 2019,30(11):1097-1106. DOI: 10.1111/clr.13523. [2] Haugen HJ, Lyngstadaas SP, Rossi F, et al.Bone grafts: which is the ideal biomaterial?[J]. J Clin Periodontol, 2019,46(Suppl 21):S92-S102. DOI: 10.1111/jcpe.13058. [3] Williams DF.Specifications for innovative, enabling biomaterials based on the principles of biocompatibility mechanisms[J]. Front Bioeng Biotechnol, 2019,7:255. DOI: 10.3389/fbioe.2019.00255. [4] Vishwakarma A, Bhise NS, Evangelista MB, et al.Engineering immunomodulatory biomaterials to tune the inflammatory response[J]. Trends Biotechnol, 2016,34(6):470-482. DOI: 10.1016/j.tibtech.2016.03.009. [5] Miron RJ, Bosshardt DD.OsteoMacs: key players around bone biomaterials[J]. Biomaterials, 2016,82:1-19. DOI: 10.1016/j.biomaterials.2015.12.017. [6] Sadowska JM, Ginebra MP.Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds[J]. J Mater Chem B, 2020,8(41):9404-9427. DOI: 10.1039/d0tb01379j. [7] Vasconcelos DP, Águas AP, Barbosa MA, et al.The inflammasome in host response to biomaterials: bridging inflammation and tissue regeneration[J]. Acta Biomater, 2019,83:1-12. DOI: 10.1016/j.actbio.2018.09.056. [8] Li J, Jiang X, Li H, et al.Tailoring materials for modulation of macrophage fate[J]. Adv Mater, 2021,33(12):e2004172. DOI: 10.1002/adma.202004172. [9] Li C, Guo C, Fitzpatrick V, et al.Design of biodegradable, implantable devices towards clinical translation[J]. Nat Rev Mater. 2020,5(1): 61-81. DOI: 10.1038/s41578-019-0150-z. [10] Marsell R, Einhorn TA.The biology of fracture healing[J]. Injury, 2011,42(6):551-555. DOI: 10.1016/j.injury.2011.03.031. [11] Einhorn TA, Gerstenfeld LC.Fracture healing: mechanisms and interventions[J]. Nat Rev Rheumatol, 2015,11(1):45-54. DOI: 10.1038/nrrheum.2014.164. [12] Abdelmagid SM, Barbe MF, Safadi FF.Role of inflammation in the aging bones[J]. Life Sci, 2015,123:25-34. DOI: 10.1016/j.lfs.2014.11.011. [13] Arango Duque G, Descoteaux A.Macrophage cytokines: involvement in immunity and infectious diseases[J]. Front Immunol, 2014,5:491. DOI: 10.3389/fimmu.2014.00491. [14] Zhang Q, Chen B, Yan F, et al.Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases[J]. Biomed Res Int, 2014,2014:284836. DOI: 10.1155/2014/284836. [15] Chen G, Deng C, Li YP.TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci, 2012,8(2):272-288. DOI: 10.7150/ijbs.2929. [16] Anderson JM, Rodriguez A, Chang DT.Foreign body reaction to biomaterials[J]. Semin Immunol, 2008,20(2):86-100. DOI: 10.1016/j.smim.2007.11.004. [17] Taraballi F, Sushnitha M, Tsao C, et al.Biomimetic tissue engineering: tuning the immune and inflammatory response to implantable biomaterials[J]. Adv Healthc Mater, 2018,7(17):e1800490. DOI: 10.1002/adhm.201800490. [18] Roach P, Farrar D, Perry CC.Interpretation of protein adsorption: surface-induced conformational changes[J]. J Am Chem Soc, 2005,127(22):8168-8173. DOI: 10.1021/ja042898o. [19] Shi M, Wang C, Wang Y, et al.Deproteinized bovine bone matrix induces osteoblast differentiation via macrophage polarization[J]. J Biomed Mater Res A, 2018,106(5):1236-1246. DOI: 10.1002/jbm.a.36321. [20] Fujioka-Kobayashi M, Marjanowski SD, Kono M, et al.In vitro comparison of macrophage polarization and osteoblast differentiation potentials between granules and block forms of deproteinized bovine bone mineral[J]. Materials (Basel), 2020,13(12):2682. DOI: 10.3390/ma13122682. [21] Tai S, Cheng JY, Ishii H, et al.Effects of beta-tricalcium phosphate particles on primary cultured murine dendritic cells and macrophages[J]. Int Immunopharmacol, 2016,40:419-427. DOI: 10.1016/j.intimp.2016.09.021. [22] Zhang L, Ke J, Wang Y, et al.An in vitro investigation of the marked impact of dendritic cell interactions with bone grafts[J]. J Biomed Mater Res A, 2017,105(6):1703-1711. DOI: 10.1002/jbm.a.36048. [23] Chen Z, Mao X, Tan L, et al.Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate[J]. Biomaterials, 2014,35(30):8553-8565. DOI: 10.1016/j.biomaterials.2014.06.038. [24] Zhao Z, Zhao Q, Gu B, et al.Minimally invasive implantation and decreased inflammation reduce osteoinduction of biomaterial[J]. Theranostics, 2020,10(8): 3533-3545. DOI: 10.7150/thno.39507. [25] Zheng K, Niu W, Lei B, et al.Immunomodulatory bioactive glasses for tissue regeneration[J]. Acta Biomater, 2021,133:168-186. DOI: 10.1016/j.actbio.2021.08.023. [26] 张玉峰. 血浆基质制品的前世今生[J].中华口腔医学杂志, 2021,56(8):740-746. DOI: 10.3760/cma.j.cn112144-20210511-00222. [27] Feng M, Wang Y, Zhang P, et al.Antibacterial effects of platelet-rich fibrin produced by horizontal centrifugation[J]. Int J Oral Sci, 2020,12(1):32. DOI: 10.1038/s41368-020-00099-w. [28] Melo-Ferraz A, Coelho C, Miller P, et al.Platelet activation and antimicrobial activity of L-PRF: a preliminary study[J]. Mol Biol Rep, 2021,48(5):4573-4580. DOI: 10.1007/s11033-021-06487-7. [29] Cieślik-Bielecka A, Bold T, Ziółkowski G, et al.Antibacterial activity of leukocyte- and platelet-rich plasma: an in vitro study[J]. Biomed Res Int, 2018,2018:9471723. DOI: 10.1155/2018/9471723. [30] Bielecki T, Dohan Ehrenfest DM, Everts PA, et al.The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: new perspectives[J]. Curr Pharm Biotechnol, 2012,13(7):1153-1162. DOI: 10.2174/138920112800624373. [31] Dohan DM, Choukroun J, Diss A, et al.Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates?[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006,101(3):e51-e55. DOI: 10.1016/j.tripleo.2005.07.010. [32] Zhang J, Yin C, Zhao Q, et al.Anti-inflammation effects of injectable platelet-rich fibrin via macrophages and dendritic cells[J]. J Biomed Mater Res A, 2020,108(1):61-68. DOI: 10.1002/jbm.a.36792. [33] Chen Z, Klein T, Murray RZ, et al.Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Mater Today, 2016,19(6): 304-321. DOI: 10.1016/j.mattod.2015.11.004. [34] Lin R, Deng C, Li X, et al.Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface[J]. Theranostics, 2019,9(21):6300-6313. DOI: 10.7150/thno.36120. [35] Tan S, Wang Y, Du Y, et al.Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation[J]. Bioact Mater, 2021,6(10):3411-3423. DOI: 10.1016/j.bioactmat.2021.03.006. [36] Zhang X, Chen Q, Mao X.Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation[J]. Biomed Res Int, 2019,2019: 7908205. DOI: 10.1155/2019/7908205. [37] Sadowska JM, Wei F, Guo J, et al.The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis[J]. Acta Biomater, 2019,96:605-618. DOI: 10.1016/j.actbio.2019.06.057. [38] Sadowska JM, Wei F, Guo J, et al.Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation[J]. Biomaterials, 2018,181:318-332. DOI: 10.1016/j.biomaterials.2018.07.058. [39] Vassey MJ, Figueredo GP, Scurr DJ, et al.Immune modulation by design: using topography to control human monocyte attachment and macrophage differentiation[J]. Adv Sci (Weinh), 2020,7(11):1903392. DOI: 10.1002/advs.201903392. [40] Hotchkiss KM, Clark NM, Olivares-Navarrete R.Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials, 2018,182:202-215. DOI: 10.1016/j.biomaterials.2018.08.029. [41] Qi H, Shi M, Ni Y, et al.Size-confined effects of nanostructures on fibronectin-induced macrophage inflammation on titanium implants[J]. Adv Healthc Mater, 2021,10(20):e2100994. DOI: 10.1002/adhm.202100994. [42] Zhang F, Qi H, Mo W, et al.Low surface accessible area nanocoral TiO2 for the reduction of foreign body reaction during implantation[J]. Adv Healthc Mater, 2022,11(13):e2200382. DOI: 10.1002/adhm.202200382. [43] Jin SS, He DQ, Luo D, et al.A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration[J]. ACS Nano, 2019,13(6):6581-6595. DOI: 10.1021/acsnano.9b00489. [44] Schlundt C, El Khassawna T, Serra A, et al.Macrophages in bone fracture healing: their essential role in endochondral ossification[J]. Bone, 2018,106:78-89. DOI: 10.1016/j.bone.2015.10.019. [45] He XT, Li X, Xia Y, et al.Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: experimental studies in vitro and in rats[J]. Acta Biomater, 2019,88:162-180. DOI: 10.1016/j.actbio.2019.02.004. [46] Zheng ZW, Chen YH, Wu DY, et al.Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis[J]. Theranostics, 2018,8(19):5482-5500. DOI: 10.7150/thno.28315. [47] Li N, Liu L, Wei C, et al.Immunomodulatory blood-derived hybrid hydrogels as multichannel microenvironment modulators for augmented bone regeneration[J]. ACS Appl Mater Interfaces, 2022,14(48):53523-53534. DOI: 10.1021/acsami.2c16774. [48] Yin C, Zhao Q, Li W, et al.Biomimetic anti-inflammatory nano-capsule serves as a cytokine blocker and M2 polarization inducer for bone tissue repair[J]. Acta Biomater, 2020,102:416-426. DOI: 10.1016/j.actbio.2019.11.025. [49] Luo M, Zhao F, Liu L, et al.IFN-γ/SrBG composite scaffolds promote osteogenesis by sequential regulation of macrophages from M1 to M2[J]. J Mater Chem B, 2021,9(7):1867-1876. DOI: 10.1039/d0tb02333g. |