[1] Calin M, Gebert A, Ghinea AC, et al.Designing biocompatible Ti-based metallic glasses for implant applications[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(2):875-883. DOI: 10.1016/j.msec.2012.11.015. [2] Sumner DR, Turner TM, Igloria R, et al.Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness[J]. J Biomech, 1998,31(10):909-917. DOI: 10.1016/s0021-9290(98)00096-7. [3] Lu Y, Cui Z, Cheng L, et al.Quantifying the discrepancies in the geometric and mechanical properties of the theoretically designed and additively manufactured scaffolds[J]. J Mech Behav Biomed Mater, 2020,112:104080. DOI: 10.1016/j.jmbbm.2020.104080. [4] Arabnejad S, Burnett Johnston R, Pura JA, et al.High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints[J]. Acta Biomater, 2016,30:345-356. DOI: 10.1016/j.actbio.2015.10.048. [5] Pei X, Wu L, Zhou C, et al.3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study[J]. Biofabrication, 2021,13(1):015008. DOI: 10.1088/1758-5090/abdb89. [6] Zheng X, Duan F, Song Z, et al.A TMPS-designed personalized mandibular scaffolds with optimized SLA parameters and mechanical properties[J]. Frontiers in Materials, 2022,9. [7] ISO.13314-2011(E) ,Mechanical testing of metals-Ductility Testing-Compression test for porous and cellular metals[S]. ISO: 2011. [8] Li L, Shi J, Zhang K, et al.Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models[J]. J Orthop Translat, 2019,19:94-105. DOI: 10.1016/j.jot.2019.03.003. [9] Peng WM, Liu YF, Jiang XF, et al.Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications[J]. J Zhejiang Univ Sci B, 2019,20(8):647-659. DOI: 10.1631/jzus.B1800622. [10] Melchels FP, Barradas AM, van Blitterswijk CA, et al. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing[J]. Acta Biomater, 2010,6(11):4208-4217. DOI: 10.1016/j.actbio.2010.06.012. [11] Diez-Escudero A, Harlin H, Isaksson P, et al.Porous polylactic acid scaffolds for bone regeneration: a study of additively manufactured triply periodic minimal surfaces and their osteogenic potential[J]. J Tissue Eng, 2020,11(27):245-260. DOI: 10.1177/2041731420956541. [13] Otsuki B, Takemoto M, Fujibayashi S, et al.Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J]. Biomaterials, 2006,27(35):5892-5900. DOI: 10.1016/j.biomaterials.2006.08.013. [15] Lindahl O.Mechanical properties of dried defatted spongy bone[J]. Acta Orthop Scand, 1976,47(1):11-19. DOI: 10.3109/17453677608998966. [16] Ding M, Dalstra M, Danielsen CC, et al.Age variations in the properties of human tibial trabecular bone[J]. J Bone Joint Surg Br, 1997,79(6):995-1002. DOI: 10.1302/0301-620x.79b6.7538. [18] Burstein AH, Reilly DT, Martens M.Aging of bone tissue: mechanical properties[J]. J Bone Joint Surg Am, 1976,58(1):82-86. [19] Rho JY, Tsui TY, Pharr GM.Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation[J]. Biomaterials, 1997,18(20):1325-1330. DOI: 10.1016/s0142-9612(97)00073-2. |