[1] Wang MK, Xiao F, Xu X.Antibacterial properties and biological activity of 3D-printed titanium alloy implants with a near-infrared photoresponsive surface[J]. Int J Implant Dent, 2025,11(1):3. DOI: 10.1186/s40729-024-00587-2. [2] Dantas T, Madeira S, Gasik M, et al.Customized root-analogue implants: a review on outcomes from clinical trials and case reports[J]. Materials (Basel), 2021,14(9):2296. DOI: 10.3390/ma14092296. [3] Yu J, Zhou M, Zhang L, et al.Antibacterial adhesion strategy for dental titanium implant surfaces: from mechanisms to application[J]. J Funct Biomater, 2022,13(4):169. DOI: 10.3390/jfb13040169. [4] Molina N, González A, Monopoli D, et al.Dendritic scaffold onto titanium implants. A versatile strategy increasing biocompatibility[J]. Polymers (Basel), 2020,12(4):770. DOI: 10.3390/polym12040770. [5] Li Q, Yang J, Li J, et al.Antibacterial cu-doped calcium phosphate coating on pure titanium[J]. Materials Transactions, 2021, 62(7): 1052-1055.DOI:10.2320/matertrans.MT-M2021005. [6] Luo Q, Cao H, Wang L, et al.ZnO@ZnS nanorod-array coated titanium: good to fibroblasts but bad to bacteria[J]. J Colloid Interface Sci, 2020,579:50-60. DOI: 10.1016/j.jcis.2020.06.055. [7] Nie B, Long T, Ao H, et al.Covalent immobilization of enoxacin onto titanium implant surfaces for inhibiting multiple bacterial species infection and in vivo methicillin-resistant staphylococcus aureus infection prophylaxis[J]. Antimicrob Agents Chemother, 2017,61(1):e01766-16. DOI: 10.1128/AAC.01766-16. [8] Liu J, Zhao H, Wang Y, et al.Impacts of simultaneous exposure to arsenic (III) and copper (II) on inflammatory response, immune homeostasis, and heat shock response in chicken thymus[J]. Int Immunopharmacol, 2018,64:60-68. DOI: 10.1016/j.intimp.2018.08.021. [9] Sun XD, Liu TT, Wang QQ, et al.Surface modification and functionalities for titanium dental implants[J]. ACS Biomater Sci Eng, 2023,9(8):4442-4461. DOI: 10.1021/acsbiomaterials.3c00183. [10] Saba T, Saad K, Rashid AB.Precise surface engineering:leveraging chemical vapor deposition for enhanced biocompatibility and durability in biomedical implants[J]. Heliyon, 2024,10(18):e37976. DOI: 10.1016/j.heliyon.2024.e37976. [11] Sun Z, Khlusov IA, Evdokimov KE, et al.Nitrogen-doped titanium dioxide films fabricated via magnetron sputtering for vascular stent biocompatibility improvement[J]. J Colloid Interface Sci, 2022,626:101-112. DOI: 10.1016/j.jcis.2022.06.114. [12] Kondyurin A, Lau K, Tang F, et al.Plasma ion implantation of silk biomaterials enabling direct covalent immobilization of bioactive agents for enhanced cellular responses[J]. ACS Appl Mater Interfaces, 2018,10(21):17605-17616. DOI: 10.1021/acsami.8b03182. [13] Gao H, Jiang N, Niu Q, et al.Biocompatible nanostructured silver-incorporated implant surfaces show effective antibacterial, osteogenic, and anti-inflammatory effects in vitro and in rat model[J]. Int J Nanomedicine, 2023,18:7359-7378. DOI: 10.2147/IJN.S435415. [14] Zhang Y, Xiu P, Jia Z, et al.Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications[J]. Colloids Surf B Biointerfaces, 2018,169:366-374. DOI: 10.1016/j.colsurfb.2018.05.044. [15] Dotta TC, D'Ercole S, Iezzi G, et al. The interaction between oral bacteria and 3D titanium porous surfaces produced by selective laser melting-a narrative review[J]. Biomimetics (Basel), 2024,9(8):461. DOI: 10.3390/biomimetics9080461. [16] Kang J, Meng S, Liu C, et al.Polydopamine-assisted dual metal ion modification of titanium: enhancing osseointegration and antibacterial performance[J]. Colloids Surf B Biointerfaces, 2025,253:114717. DOI: 10.1016/j.colsurfb.2025.114717. [17] Mao Y, Xie X, Sun G, et al.Multifunctional prosthesis surface: modification of titanium with cinnamaldehyde-loaded hierarchical titanium dioxide nanotubes[J]. Adv Healthc Mater, 2024,13(14):e2303374. DOI: 10.1002/adhm.202303374. [18] Muhoza B, Qi B, Harindintwali JD, et al.Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications[J]. Crit Rev Food Sci Nutr, 2023,63(15):2521-2543. DOI: 10.1080/10408398.2021.1977236. [19] Ou Y, Yan M, Gao G, et al.Cinnamaldehyde protects against ligature-induced periodontitis through the inhibition of microbial accumulation and inflammatory responses of host immune cells[J]. Food Funct, 2022,13(15):8091-8106. DOI: 10.1039/d2fo00963c. [20] Trzaskowska M, Vivcharenko V, Kazimierczak P, et al.In vitro screening studies on eight commercial essential oils-derived compounds to identify promising natural agents for the prevention of osteoporosis[J]. Biomedicines, 2023,11(4):1095. DOI: 10.3390/biomedicines11041095. [21] Zhang ND, Han T, Huang BK, et al.Traditional Chinese medicine formulas for the treatment of osteoporosis: implication for antiosteoporotic drug discovery[J]. J Ethnopharmacol, 2016,189:61-80. DOI: 10.1016/j.jep.2016.05.025. [22] 欧艳晶, 陆洁, 陈江. 亲水性钛表面负载肉桂醛抑制牙龈卟啉单胞菌的作用研究[J].中国口腔种植学杂志, 2023, 28(6):410-416. DOI: 10.12337/zgkqzzxzz.2023.12.004. Ou YJ, Lu J, Chen J.Inhibition of Porphyromonas gingivalis by hydrophilic titanium surface modified with cinnamaldehyde[J].Chin J Oral Implantol, 2023, 28(6): 410-416.DOI: 10.12337/zgkqzzxzz.2023.12.004. [23] Wu S, Xu J, Zou L, et al.Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection[J]. Nat Commun, 2021,12(1):3303. DOI: 10.1038/s41467-021-23069-0. [24] Kligman S, Ren Z, Chung CH, et al.The impact of dental implant surface modifications on osseointegration and biofilm formation[J]. J Clin Med, 2021,10(8):1641. DOI: 10.3390/jcm10081641. [25] Banerjee S, Banerjee S.Anticancer potential and molecular mechanisms of cinnamaldehyde and its congeners present in the cinnamon plant[J]. Physiologia, 2023, 3(2): 173-207.DOI:10.3390/physiologia3020013. [26] Ma T, Wang CX, Ge XY, et al.Applications of polydopamine in implant surface modification[J]. Macromol Biosci, 2023,23(10):e2300067. DOI: 10.1002/mabi.202300067. [27] 陈晓慧. 肉桂醛缓解金黄色葡萄球菌诱导乳腺炎症反应的作用机制研究[D].银川:宁夏大学, 2025.DOI: 10.27257/d.cnki.gnxhc.2025.000038. Chen XH.Study on the mechanism of cinnamaldehyde alleviating Staphylococcus aureus-induced breast inflammatory response[D].Yinchuan: Ningxia Univ,2025.DOI:10.27257/d.cnki.gnxhc.2025.000038. |