中国口腔种植学杂志 ›› 2025, Vol. 30 ›› Issue (6): 580-586.DOI: 10.12337/zgkqzzxzz.2025.12.011

• 基础研究 • 上一篇    下一篇

3D打印Ti-6Al-4V表面载聚多巴胺-肉桂醛的抗菌性能研究

宋娜玮1, 魏昭明1, 屈晨曦1, 刘苗1,2   

  1. 1佳木斯大学口腔医学院 佳木斯大学口腔医学工程实验中心 黑龙江省生物医学材料及临床应用重点实验室 154002;
    2佳木斯大学附属口腔医院修复科 154004
  • 收稿日期:2025-09-05 出版日期:2025-12-30 发布日期:2025-12-23
  • 通讯作者: 刘苗,Email:23160118@qq.com,电话:0454-8625531
  • 作者简介:宋娜玮,硕士研究生,研究方向:口腔种植材料。
    刘苗,主任医师、硕士研究生导师,研究方向:口腔种植材料 。
  • 基金资助:
    黑龙江省教育厅基本科研业务费基础研究项目(2018-KYYWF-0933)

Antibacterial performance of 3D printed Ti-6Al-4V surfaces loaded with polydopamine-cinnamaldehyde

Song Nawei1, Wei Zhaoming1, Qu Chenxi1, Liu Miao1,2   

  1. 1Stomatology College of Jiamusi University, Experimental Center for Stomatological Engineering, Jiamusi University, Key Laboratory of Oral Biomedical Materials and Clinical Application, Heilongjiang Province, Jiamusi 154002, Heilongjiang, China;
    2Department of Oral Prosthodontics, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi 154004, Heilongjiang, China
  • Received:2025-09-05 Online:2025-12-30 Published:2025-12-23
  • Contact: Liu Miao, Email: 23160118@qq.com, Tel: 0086-454-8625531
  • Supported by:
    Heilongjiang Basic Research Project Supported by the Basic Scientific Research Business Expenses of the Provincial Department of Education (2018-KYYWF-0933)

摘要: 目的 在3D打印的六铝四钒钛(Ti-6Al-4V)表面成功负载聚多巴胺-肉桂醛(PDA-CA),探究其抗菌性能及生物相容性。方法 通过沉积法在3D打印的Ti-6Al-4V表面负载PDA-CA,将3D打印的Ti-6Al-4V作为空白对照组,将表面喷砂酸蚀(SLA)后的试件作为实验对照组,实验组分为聚多巴胺(PDA)组、肉桂醛(CA)组和PDA-CA组。采用扫描电子显微镜(SEM)观察各组表面形貌;能谱仪(EDS)检测各组元素组成;水接触角检测仪检测其亲水性;将MC3T3-E1细胞接种于各组样品表面,探究其生物相容性;将金黄色葡萄球菌和大肠杆菌接种于各组样品表面,检测其抗菌性。结果 SEM结果显示PDA-CA组有均匀的物质覆盖;EDS检测结果显示PDA组有特征性的氮(N)元素出现,PDA-CA组CA含有的碳(C)、氧(O)元素含量明显升高;水接触角检测结果显示实验组均为亲水性;PDA-CA组显著提升了CA的负载量,且抗菌性能显著优于其他组,同时有良好的生物相容性。结论 PDA-CA的成功负载可以增强3D打印Ti-6Al-4V的抗菌作用,且有良好的生物相容性。

关键词: 3D打印, 六铝四钒钛, 聚多巴胺, 肉桂醛, 抗菌

Abstract: Objective To successfully load polydopamine-cinnamaldehyde (PDA-CA) composite coatings onto the surface of 3D-printed Ti-6Al-4V specimens and to investigate their antibacterial properties and biocompatibility. Methods PDA-CA was deposited onto 3D-printed Ti-6Al-4V specimens. Untreated 3D-printed Ti-6Al-4V served as the blank control group, and sandblasted-acid-etched specimens served as the experimental control group. The experimental groups included a PDA group, a cinnamaldehyde (CA) group, and a PDA-CA group. The surface morphology was examined using scanning electron microscopy (SEM), elemental composition was analyzed by energy-dispersive spectroscopy (EDS), and hydrophilicity was evaluated via water contact angle measurements. MC3T3-E1 cells were inoculated onto specimen surfaces to assess biocompatibility, and Staphylococcus aureus and Escherichia coli were used to evaluate antibacterial properties. Results SEM results showed uniform substance coverage in the PDA-CA group. EDS results revealed the characteristic nitrogen (N) element in the PDA group and significantly increased carbon (C) and oxygen (O) contents-derived from cinnamaldehyde-in the PDA-CA group. The water contact angle measurements indicated hydrophilicity in all experimental groups. The PDA-CA group demonstrated markedly enhanced cinnamaldehyde loading, significantly superior antibacterial activitg compared with those of other groups, and good biocompatibility. Conclusion Successful loading of PDA-CA enhances the antibacterial properties of 3D-printed Ti-6Al-4V while maintaining favorable biocompatibility.

Key words: 3D printing, Ti-6Al-4V, Polydopamine, Cinnamaldehyde, Antibacterial