中国口腔种植学杂志 ›› 2025, Vol. 30 ›› Issue (4): 412-420.DOI: 10.12337/zgkqzzxzz.2025.08.014
• 综述 • 上一篇
杨玉浦, 董哲勤, 于红伟, 刘煜, 王晓虹, 王胜妙, 兰晶
收稿日期:
2025-01-30
出版日期:
2025-08-30
发布日期:
2025-08-29
通讯作者:
兰晶,Email:kqlj@sdu.edu.cn,电话:0531-88382595
作者简介:
杨玉浦,口腔医学专业型硕士研究生,研究方向:口腔种植学、可注射水凝胶用于拔牙位点保存。基金资助:
Yang Yupu, Dong Zheqin, Yu Hongwei, Liu Yu, Wang Xiaohong, Wang Shengmiao, Lan Jing
Received:
2025-01-30
Online:
2025-08-30
Published:
2025-08-29
Contact:
Lan Jing, Email: Supported by:
摘要: 随着骨组织工程技术的发展,新型生物材料逐渐成为现代骨组织修复的主要研究方向。可注射水凝胶因其优异的生物相容性、高度可调性和药物负载能力,逐渐成为骨组织修复领域的重要材料。本文综述了可注射水凝胶在骨组织修复中的研究进展,重点探讨了其在骨组织修复中的应用策略。
杨玉浦,董哲勤,于红伟,等. 可注射水凝胶在骨组织修复中的应用[J]. 中国口腔种植学杂志, 2025, 30(4): 412-420. DOI: 10.12337/zgkqzzxzz.2025.08.014
Yang Yupu, Dong Zheqin, Yu Hongwei, Liu Yu, Wang Xiaohong, Wang Shengmiao, Lan Jing. Application of injectable hydrogels in bone tissue regeneration[J].Chinese Journal of Oral Implantology, 2025, 30(4): 412-420.DOI: 10.12337/zgkqzzxzz.2025.08.014.
[1] Koushik TM, Miller CM, Antunes E.Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds[J]. Adv Healthc Mater, 2023,12(9):e2202766. DOI: 10.1002/adhm.202202766. [2] Helaehil JV, Huang B, Bartolo P, et al.Bone regeneration: the influence of composite HA/TCP scaffolds and electrical stimulation on TGF/BMP and RANK/RANKL/OPG pathways[J]. Injury, 2025,56(2):112158. DOI: 10.1016/j.injury.2025.112158. [3] Hasegawa T, Sasaki A, Saito I, et al.Success of dental implants in patients with large bone defect and analysis of risk factors for implant failure: a non-randomized retrospective cohort study[J]. Clin Oral Investig, 2022,26(3):2743-2750. DOI: 10.1007/s00784-021-04249-0. [4] Feng Y, Zhu S, Mei D, et al.Application of 3D printing technology in bone tissue engineering: a review[J]. Curr Drug Deliv, 2021,18(7):847-861. DOI: 10.2174/1567201817999201113100322. [5] Gillman CE, Jayasuriya AC.FDA-approved bone grafts and bone graft substitute devices in bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021,130:112466. DOI: 10.1016/j.msec.2021.112466. [6] Xie H, Cao L, Ye L, et al.Autogenous bone particles combined with platelet-rich plasma can stimulate bone regeneration in rabbits[J]. Exp Ther Med, 2020,20(6):279. DOI: 10.3892/etm.2020.9409. [7] Zou W, Li X, Li N, et al.A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model[J]. Regen Biomater, 2021,8(1):52-62. DOI: 10.1093/rb/rbaa040. [8] Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S.Biomaterials for bone tissue engineering: achievements to date and future directions[J]. Biomed Mater, 2024,20(1):012001.DOI: 10.1088/1748-605X/ad967c. [9] Ho TC, Chang CC, Chan HP, et al.Hydrogels: properties and applications in biomedicine[J]. Molecules, 2022,27(9):2902. DOI: 10.3390/molecules27092902. [10] Bertsch P, Diba M, Mooney DJ, et al.Self-healing injectable hydrogels for tissue regeneration[J]. Chem Rev, 2023,123(2):834-873. DOI: 10.1021/acs.chemrev.2c00179. [11] Li G, Liu S, Chen Y, et al.An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment[J]. Nat Commun, 2023,14(1):3159. DOI: 10.1038/s41467-023-38597-0. [12] Wang W, Zhang G, Wang Y, et al.An injectable and thermosensitive hydrogel with nano-aided NIR-II phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration[J]. J Nanobiotechnology, 2023,21(1):367. DOI: 10.1186/s12951-023-02124-6. [13] Duda GN, Geissler S, Checa S, et al.The decisive early phase of bone regeneration[J]. Nat Rev Rheumatol, 2023,19(2):78-95. DOI: 10.1038/s41584-022-00887-0. [14] Schell H, Duda GN, Peters A, et al.The haematoma and its role in bone healing[J]. J Exp Orthop, 2017,4(1):5. DOI: 10.1186/s40634-017-0079-3. [15] ElHawary H, Baradaran A, Abi-Rafeh J, et al. Bone healing and inflammation: principles of fracture and repair[J]. Semin Plast Surg, 2021,35(3):198-203. DOI: 10.1055/s-0041-1732334. [16] Zhao Q, Liu X, Yu C, et al.Macrophages and bone marrow-derived mesenchymal stem cells work in concert to promote fracture healing: a brief review[J]. DNA Cell Biol, 2022,41(3):276-284. DOI: 10.1089/dna.2021.0869. [17] Vasquez-Sancho F, Abdollahi A, Damjanovic D, et al.Flexoelectricity in Bones[J]. Adv Mater, 2018,30(9).DOI: 10.1002/adma.201705316. [18] Funk R, Scholkmann F.The significance of bioelectricity on all levels of organization of an organism. Part 1: from the subcellular level to cells[J]. Prog Biophys Mol Biol, 2023,177:185-201. DOI: 10.1016/j.pbiomolbio.2022.12.002. [19] Sun J, Xie W, Wu Y, et al.Accelerated bone healing via electrical stimulation[J]. Adv Sci (Weinh), 2025,12(24):e2404190. DOI: 10.1002/advs.202404190. [20] Wright CS, Robling AG, Farach-Carson MC, et al.Skeletal functions of voltage sensitive calcium channels[J]. Curr Osteoporos Rep, 2021,19(2):206-221. DOI: 10.1007/s11914-020-00647-7. [21] Xu Z, Kusumbe AP, Cai H, et al.Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2023,111(7):1434-1446. DOI: 10.1002/jbm.b.35243. [22] Kameo Y, Adachi T, Hojo M.Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation[J]. J Mech Behav Biomed Mater, 2011,4(6):900-908. DOI: 10.1016/j.jmbbm.2011.03.008. [23] Kim JM, Lin C, Stavre Z, et al.Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020,9(9):2073. DOI: 10.3390/cells9092073. [24] Wang H, Heilshorn SC.Adaptable hydrogel networks with reversible linkages for tissue engineering[J]. Adv Mater, 2015,27(25):3717-3736. DOI: 10.1002/adma.201501558. [25] Caprio ND, Davidson MD, Daly AC, et al.Injectable MSC spheroid and microgel granular composites for engineering tissue[J]. Adv Mater, 2024,36(14):e2312226. DOI: 10.1002/adma.202312226. [26] Chen Z, Lv Y. Gelatin/sodium alginate composite hydrogel with dynamic matrix stiffening ability for bone regeneration[J]. Composites Part B: Engineering, 2022, 243(15):110162.1-110162.13. DOI: 10.1016/j.compositesb. 2022.110162. [27] Peng W, Li D, Dai K, et al.Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications[J]. Int J Biol Macromol, 2022,208:400-408. DOI: 10.1016/j.ijbiomac.2022.03.002. [28] Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, et al.Collagen-based biomaterials for biomedical applications[J]. J Biomed Mater Res B Appl Biomater, 2021,109(12):1986-1999. DOI: 10.1002/jbm.b.34881. [29] Mercer IG, Yu K, Devanny AJ, et al.Plasticity variable collagen-PEG interpenetrating networks modulate cell spreading[J]. Acta Biomater, 2024,187:242-252. DOI: 10.1016/j.actbio.2024.08.040. [30] Milano F, Masi A, Madaghiele M, et al.Current trends in gelatin-based drug delivery systems[J]. Pharmaceutics, 2023,15(5):1499. DOI: 10.3390/pharmaceutics15051499. [31] Zhou B, Jiang X, Zhou X, et al.GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances[J]. Biomater Res, 2023,27(1):86. DOI: 10.1186/s40824-023-00422-6. [32] Jazayeri HE, Tahriri M, Razavi M, et al.A current overview of materials and strategies for potential use in maxillofacial tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2017,70(Pt 1):913-929. DOI: 10.1016/j.msec.2016.08.055. [33] Deng H, Dong A, Song J, et al.Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery[J]. J Control Release, 2019,297:60-70. DOI: 10.1016/j.jconrel.2019.01.026. [34] Zhao H, Huang J, Li Y, et al.ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020,258:120286. DOI: 10.1016/j.biomaterials.2020.120286. [35] Shi J, Yu L, Ding J.PEG-based thermosensitive and biodegradable hydrogels[J]. Acta Biomater, 2021,128:42-59. DOI: 10.1016/j.actbio.2021.04.009. [36] He G, Xian Y, Lin H, et al.An injectable and coagulation-independent tetra-PEG hydrogel bioadhesive for post-extraction hemostasis and alveolar bone regeneration[J]. Bioact Mater, 2024,37:106-118. DOI: 10.1016/j.bioactmat.2024.03.015. [37] Wei Z, Ye H, Li Y, et al.Mechanically tough, adhesive, self-healing hydrogel promotes annulus fibrosus repair via autologous cell recruitment and microenvironment regulation[J]. Acta Biomater, 2024,178:50-67. DOI: 10.1016/j.actbio.2024.02.020. [38] He M, Hou Y, Zhu C, et al.3D-printing biodegradable PU/PAAM/Gel hydrogel scaffold with high flexibility and self-adaptibility to irregular defects for nonload-bearing bone regeneration[J]. Bioconjug Chem, 2021,32(8):1915-1925. DOI: 10.1021/acs.bioconjchem.1c00322. [39] Yuan L, Li B, Yang J, et al.Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors[J]. Tissue Eng Part A, 2016,22(11-12):899-906. DOI: 10.1089/ten.TEA.2015.0513. [40] Xu Z, Liu G, Liu P, et al.Hyaluronic acid-based glucose-responsive antioxidant hydrogel platform for enhanced diabetic wound repair[J]. Acta Biomater, 2022,147:147-157. DOI: 10.1016/j.actbio.2022.05.047. [41] Wang T, Yi W, Zhang Y, et al.Sodium alginate hydrogel containing platelet-rich plasma for wound healing[J]. Colloids Surf B Biointerfaces, 2023,222:113096. DOI: 10.1016/j.colsurfb.2022.113096. [42] Guo S, Yao M, Zhang D, et al.One-step synthesis of multifunctional chitosan hydrogel for full-thickness wound closure and healing[J]. Adv Healthc Mater, 2022,11(4):e2101808. DOI: 10.1002/adhm.202101808. [43] Wang J, Youngblood R, Cassinotti L, et al.An injectable PEG hydrogel controlling neurotrophin-3 release by affinity peptides[J]. J Control Release, 2021,330:575-586. DOI: 10.1016/j.jconrel.2020.12.045. [44] Babaluei M, Mottaghitalab F, Seifalian A, et al.Injectable multifunctional hydrogel based on carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C and curcumin promoted full-thickness burn regeneration[J]. Int J Biol Macromol, 2023,236:124005. DOI: 10.1016/j.ijbiomac.2023.124005. [45] Zarrin K, Mottaghitalab F, Reis RL, et al.Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model[J]. Int J Bio Macromolecules, 2022, 213: 352-368. DOI:10.1016/j.ijbiomac.2022.05.176. [46] Toosi S, Behravan J.Osteogenesis and bone remodeling: a focus on growth factors and bioactive peptides[J]. Biofactors, 2020,46(3):326-340. DOI: 10.1002/biof.1598. [47] Begam H, Nandi SK, Kundu B, et al.Strategies for delivering bone morphogenetic protein for bone healing[J]. Mater Sci Eng C Mater Biol Appl, 2017,70(Pt 1):856-869. DOI: 10.1016/j.msec.2016.09.074. [48] Wu M, Wu S, Chen W, et al.The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease[J]. Cell Res, 2024,34(2):101-123. DOI: 10.1038/s41422-023-00918-9. [49] Halloran D, Durbano HW, Nohe A.Bone morphogenetic protein-2 in development and bone homeostasis[J]. J Dev Biol, 2020,8(3):19. DOI: 10.3390/jdb8030019. [50] Lv Z, Hu T, Bian Y, et al.A MgFe-LDH nanosheet-incorporated smart thermo-responsive hydrogel with controllable growth factor releasing capability for bone regeneration[J]. Adv Mater, 2023,35(5):e2206545. DOI: 10.1002/adma.202206545. [51] Agnihotri R, Gaur S.Applications of teriparatide for alveolar bone regeneration: a systematic review[J]. J Int Soc Prev Community Dent, 2021,11(6):639-643. DOI: 10.4103/jispcd.JISPCD_169_21. [52] Li R, Zhou C, Chen J, et al.Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration[J]. Bioact Mater, 2022,18:267-283. DOI: 10.1016/j.bioactmat.2022.02.011. [53] Zheng Z, Chen Y, Guo B, et al.Magnesium-organic framework-based stimuli-responsive systems that optimize the bone microenvironment for enhanced bone regeneration[J]. Chem Eng J, 2020, 396:125241.DOI:10.1016/j.cej.2020.125241. [54] Dong H, Liu R, Zou K, et al.Higenamine promotes osteogenesis Via IQGAP1/SMAD4 signaling pathway and prevents age- and estrogen-dependent bone loss in mice[J]. J Bone Miner Res, 2023,38(5):775-791. DOI: 10.1002/jbmr.4800. [55] Chen Y, Liu W, Wan S, et al.Superior synergistic osteogenesis of MXene‐based hydrogel through supersensitive drug release at mild heat[J]. Adv Func Mater, 2023, 34(2):11.DOI:10.1002/adfm.202309191. [56] Zhao Z, Li G, Ruan H, et al.Capturing magnesium Ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration[J]. ACS Nano, 2021,15(8):13041-13054. DOI: 10.1021/acsnano.1c02147. [57] Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, et al.Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies[J]. Stem Cell Res Ther, 2019,10(1):111. DOI: 10.1186/s13287-019-1212-2. [58] Zhao Y, Shi Y, Yang H, et al.Stem cell microencapsulation maintains stemness in inflammatory microenvironment[J]. Int J Oral Sci, 2022,14(1):48. DOI: 10.1038/s41368-022-00198-w. [59] Aguado BA, Mulyasasmita W, Su J, et al.Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers[J]. Tissue Eng Part A, 2012,18(7-8):806-815. DOI: 10.1089/ten.TEA.2011.0391. [60] Yan C, Mackay ME, Czymmek K, et al.Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload[J]. Langmuir, 2012,28(14):6076-6087. DOI: 10.1021/la2041746. [61] Haumer A, Bourgine PE, Occhetta P, et al.Delivery of cellular factors to regulate bone healing[J]. Adv Drug Deliv Rev, 2018,129:285-294. DOI: 10.1016/j.addr.2018.01.010. [62] Zhang Y, Cao Y, Zhao H, et al.An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration[J]. J Mater Chem B, 2020,8(19):4237-4244. DOI: 10.1039/d0tb00291g. [63] Zhou C, Zhang B, Yang Y, et al.Stem cell-derived exosomes: emerging therapeutic opportunities for wound healing[J]. Stem Cell Res Ther, 2023,14(1):107. DOI: 10.1186/s13287-023-03345-0. [64] Cui X, Fu Q, Wang X, et al.Molecular mechanisms and clinical applications of exosomes in prostate cancer[J]. Biomark Res, 2022,10(1):56. DOI: 10.1186/s40364-022-00398-w. [65] Pishavar E, Luo H, Naserifar M, et al.Advanced hydrogels as exosome delivery systems for osteogenic differentiation of MSCs: application in bone regeneration[J]. Int J Mol Sci, 2021,22(12):6203. DOI: 10.3390/ijms22126203. [66] Zhang FX, Liu P, Ding W, et al.Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration[J]. Biomaterials, 2021,278:121169. DOI: 10.1016/j.biomaterials.2021.121169. [67] Liu Y, Lin S, Xu Z, et al.High-performance hydrogel-encapsulated engineered exosomes for supporting endoplasmic reticulum homeostasis and boosting diabetic bone regeneration[J]. Adv Sci (Weinh), 2024,11(17):e2309491. DOI: 10.1002/advs.202309491. [68] Peng Y, Wu S, Li Y, et al.Type H blood vessels in bone modeling and remodeling[J]. Theranostics, 2020,10(1):426-436. DOI: 10.7150/thno.34126. [69] Diomede F, Marconi GD, Fonticoli L, et al.Functional relationship between osteogenesis and angiogenesis in tissue regeneration[J]. Int J Mol Sci, 2020,21(9):3242. DOI: 10.3390/ijms21093242. [70] Kusumbe AP, Ramasamy SK, Adams RH.Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014,507(7492):323-328. DOI: 10.1038/nature13145. [71] Zhang Y, Xie Y, Hao Z, et al.Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis[J]. ACS Appl Mater Interfaces, 2021,13(16):18472-18487. DOI: 10.1021/acsami.0c22671. [72] Xu Y, Xu C, He L, et al.Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration[J]. Bioact Mater, 2022,16:271-284. DOI: 10.1016/j.bioactmat.2022.02.024. [73] Ren X, Liu H, Wu X, et al.Reactive oxygen species (ROS)-responsive biomaterials for the treatment of bone-related diseases[J]. Front Bioeng Biotechnol, 2021,9:820468. DOI: 10.3389/fbioe.2021.820468. [74] Zhu C, Shen S, Zhang S, et al.Autophagy in bone remodeling: a regulator of oxidative stress[J]. Front Endocrinol (Lausanne), 2022,13:898634. DOI: 10.3389/fendo.2022.898634. [75] Guo F, Li J, Chen Z, et al.An injectable black phosphorus hydrogel for rapid tooth extraction socket healing[J]. ACS Appl Mater Interfaces, 2024,16(20):25799-25812. DOI: 10.1021/acsami.4c03278. [76] Zhou H, He Z, Cao Y, et al.An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation[J]. Theranostics, 2024,14(9):3739-3759. DOI: 10.7150/thno.97412. [77] Komatsu N, Takayanagi H.Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions[J]. Nat Rev Rheumatol, 2022,18(7):415-429. DOI: 10.1038/s41584-022-00793-5. [78] Pajarinen J, Lin T, Gibon E, et al.Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019,196:80-89. DOI: 10.1016/j.biomaterials.2017.12.025. [79] Cui Y, Hong S, Xia Y, et al.Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci (Weinh), 2023,10(27):e2302029. DOI: 10.1002/advs.202302029. [80] Wu M, Liu H, Zhu Y, et al.Mild photothermal-stimulation based on injectable and photocurable hydrogels orchestrates immunomodulation and osteogenesis for high-performance bone regeneration[J]. Small, 2023,19(28):e2300111. DOI: 10.1002/smll.202300111. [81] Liu Z, Wan X, Wang ZL, et al.Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications[J]. Adv Mater, 2021,33(32):e2007429. DOI: 10.1002/adma.202007429. [82] Liu S, Manshaii F, Chen J, et al.Unleashing the potential of Eelectroactive hybrid biomaterials and self-powered systems for bone therapeutics[J]. Nanomicro Lett, 2024,17(1):44. DOI: 10.1007/s40820-024-01536-9. [83] Tandon B, Blaker JJ, Cartmell SH.Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair[J]. Acta Biomater, 2018,73:1-20. DOI: 10.1016/j.actbio.2018.04.026. [84] Yao Y, Cui X, Ding S, et al.Advances in electrical materials for bone and cartilage regeneration: developments, challenges, and perspectives[J]. Adv Sci (Weinh), 2025,12(24):e2411209. DOI: 10.1002/advs.202411209. [85] Li X, Liu Y, Yang Q, et al.Injectable piezoelectric hydrogel promotes tendon-bone healing via reshaping the electrophysiological microenvironment and M2 macrophage polarization[J]. ACS Appl Mater Interfaces, 2025,17(15):22210-22231. DOI: 10.1021/acsami.4c21011. [86] Song A, Qi X, Xie S, et al.Hydrogel containing bismuth molybdate nanosheets with piezoelectricity and nanoenzyme activity for promoting osteoblast responses[J]. ACS Appl Mater Interfaces, 2025,17(16):23627-23641. DOI: 10.1021/acsami.5c00774. [87] Papadopoulos G, Griffin S, Rathi H, et al.Cost-effectiveness analysis of arthroscopic injection of a bioadhesive hydrogel implant in conjunction with microfracture for the treatment of focal chondral defects of the knee - an Australian perspective[J]. J Med Econ, 2022,25(1):712-721. DOI: 10.1080/13696998.2022.2078574. [88] Thier S, Baumann F, Weiss C, et al.Feasibility of arthroscopic autologous chondrocyte implantation in the hip using an injectable hydrogel[J]. Hip Int, 2018,28(4):442-449. DOI: 10.5301/hipint.5000580. [89] Machado A, Pereira I, Costa F, et al.Randomized clinical study of injectable dextrin-based hydrogel as a carrier of a synthetic bone substitute[J]. Clin Oral Investig, 2023,27(3):979-994. DOI: 10.1007/s00784-023-04868-9. [90] Abd El-Azeem SH, Khalil AA, Ibrahim MA, et al. The use of integrin binding domain loaded hydrogel (RGD) with minimally invasive surgical technique in treatment of periodontal intrabony defect: a randomized clinical and biochemical study[J]. J Appl Oral Sci, 2023,31:e20230263. DOI: 10.1590/1678-7757-2023-0263. |
[1] | 王宇蓝, 曾浩, 夏婷, 张玉峰. 骨致密化技术联合血浆基质在穿牙槽嵴上颌窦底提升中的应用[J]. 中国口腔种植学杂志, 2025, 30(2): 106-110. |
[2] | 李歆, 刘开政, 武诗语, 刘远翔, 黄宝鑫, 乔威, 潘浩波, 陈卓凡. 口腔种植治疗中骨再生材料的研究现状[J]. 中国口腔种植学杂志, 2024, 29(4): 371-377. |
[3] | 舒倩怡, 宿玉成. 口腔胶原膜生产工艺的研究进展[J]. 中国口腔种植学杂志, 2022, 27(6): 358-364. |
[4] | 庞莉苹, 钟心兰, 王伟岸, 李水根. 采用胶原膜固定法引导骨再生技术行牙槽嵴水平增量的临床试验研究[J]. 中国口腔种植学杂志, 2022, 27(4): 224-228. |
[5] | 雷晨, 吴奇蓉, 汤春波. 浓缩生长因子在种植与牙周领域应用的研究及进展[J]. 中国口腔种植学杂志, 2021, 26(2): 135-140. |
[6] | 黄杰, 肖逊, 温永梅. CGF联合GBR用于前牙区种植体周围炎临床效果观察分析[J]. 中国口腔种植学杂志, 2020, 25(3): 108-111. |
[7] | 刘许正, 樊卜熙, 韶波. 牙种植中引导骨再生膜的研究进展[J]. 中国口腔种植学杂志, 2019, 24(1): 44-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||