中国口腔种植学杂志 ›› 2024, Vol. 29 ›› Issue (3): 218-223.DOI: 10.12337/zgkqzzxzz.2024.06.005
• “先天缺牙的相关治疗及进展”重点栏目 • 上一篇 下一篇
张晗1,2, 孙瑶1
收稿日期:
2024-04-18
出版日期:
2024-06-30
发布日期:
2024-06-28
通讯作者:
孙瑶,Email:yaosun@tongji.edu.cn,电话:021-66313680
作者简介:
张晗 硕士研究生,研究方向:牙发育及牙数目异常研究; 孙瑶 博士、教授、博士研究生导师,研究方向:骨和牙的发育及矿化、牙和骨发育及矿化创新机理研究、功能分子在代谢性骨病干预治疗中的作用研究
基金资助:
Zhang Han1,2, Sun Yao1
Received:
2024-04-18
Online:
2024-06-30
Published:
2024-06-28
Contact:
Sun Yao, Email: Supported by:
摘要: 先天性牙缺失(先天缺牙)是一种在口腔发育中常见的异常,目前对其致病机理的了解仍然不完全。最新研究已经鉴定出多个与这种情况有关的基因,这些基因编码的蛋白质参与到调节和指导牙胚正常发育的关键信号途径中。本综述重点讨论了与先天缺牙相关的基因及其参与的牙发育信号传导途径。随着利用模式动物对这一发育异常致病过程研究的进一步深入,针对这些基因的功能调节或修复信号传递缺陷或许是治疗先天缺牙的有效策略。此外,本文还综述了在人类患者中常见先天缺牙致病基因的临床特点,并探讨了先天缺牙致病基因和肿瘤发生之间可能存在的联系。
张晗,等孙瑶. 先天缺牙致病基因的相关研究进展[J]. 中国口腔种植学杂志, 2024, 29(3): 218-223. DOI: 10.12337/zgkqzzxzz.2024.06.005
Zhang Han, Sun Yao. Progress in research on genes associated with tooth agenesis[J].Chinese Journal of Oral Implantology, 2024, 29(3): 218-223.DOI: 10.12337/zgkqzzxzz.2024.06.005.
[1] De Santis D, Sinigaglia S, Faccioni P, et al.Syndromes associated with dental agenesis[J]. Minerva Stomatol, 2019,68(1):42-56. DOI: 10.23736/S0026-4970.18.04129-8. [2] Yu M, Wong SW, Han D, et al.Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis[J]. Oral Dis, 2019,25(3):646-651. DOI: 10.1111/odi.12931. [3] Yin W, Bian Z.The gene network underlying hypodontia[J]. J Dent Res, 2015,94(7):878-885. DOI: 10.1177/0022034515583999. [4] Nieminen P, Arte S, Tanner D, et al.Identification of a nonsense mutation in the PAX9 gene in molar oligodontia[J]. Eur J Hum Genet, 2001,9(10):743-746. DOI: 10.1038/sj.ejhg.5200715. [5] Vieira AR, Meira R, Modesto A, et al.MSX1, PAX9, and TGFA contribute to tooth agenesis in humans[J]. J Dent Res, 2004,83(9):723-727. DOI: 10.1177/154405910408300913. [6] Abdalla EM, Mostowska A, Jagodziński PP, et al.A novel WNT10A mutation causes non-syndromic hypodontia in an Egyptian family[J]. Arch Oral Biol, 2014,59(7):722-728. DOI: 10.1016/j.archoralbio.2014.04.004. [7] Zhou M, Zhang H, Camhi H, et al.Analyses of oligodontia phenotypes and genetic etiologies[J]. Int J Oral Sci, 2021,13(1):32. DOI: 10.1038/s41368-021-00135-3. [8] Arte S, Parmanen S, Pirinen S, et al.Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations[J]. PLoS One, 2013,8(8):e73705. DOI: 10.1371/journal.pone.0073705. [9] Zhang L, Yu M, Wong SW, et al.Comparative analysis of rare EDAR mutations and tooth agenesis pattern in EDAR- and EDA-associated nonsyndromic oligodontia[J]. Hum Mutat, 2020,41(11):1957-1966. DOI: 10.1002/humu.24104. [10] Wong SW, Han D, Zhang H, et al.Nine novel PAX9 mutations and a distinct tooth agenesis genotype-phenotype[J]. J Dent Res, 2018,97(2):155-162. DOI: 10.1177/0022034517729322. [11] Bonczek O, Krejci P, Izakovicova-Holla L, et al.Tooth agenesis: what do we know and is there a connection to cancer?[J]. Clin Genet, 2021,99(4):493-502. DOI: 10.1111/cge.13892. [12] Daugherty RL, Gottardi CJ.Phospho-regulation of beta-catenin adhesion and signaling functions[J]. Physiology (Bethesda), 2007,22:303-309. DOI: 10.1152/physiol.00020.2007. [13] Chu KY, Wang YL, Chou YR, et al.Synergistic mutations of LRP6 and WNT10A in familial tooth agenesis[J]. J Pers Med, 2021,11(11):1217. DOI: 10.3390/jpm11111217. [14] Kim R, Yu T, Li J, et al. Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development[J]. Development, 2021,148(14):dev199685. DOI: 10.1242/dev.199685. [15] Chen X, Liu J, Li N, et al.Mesenchymal Wnt/β-catenin signaling induces Wnt and BMP antagonists in dental epithelium[J]. Organogenesis, 2019,15(2):55-67. DOI: 10.1080/15476278.2019.1633871. [16] Liu F, Chu EY, Watt B, et al.Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis[J]. Dev Biol, 2008,313(1):210-224. DOI: 10.1016/j.ydbio.2007.10.016. [17] Andl T, Reddy ST, Gaddapara T, et al.WNT signals are required for the initiation of hair follicle development[J]. Dev Cell, 2002,2(5):643-653. DOI: 10.1016/s1534-5807(02)00167-3. [18] Dasgupta K, Cesario JM, Ha S, et al.R-Spondin 3 regulates mammalian dental and craniofacial development[J]. J Dev Biol, 2021,9(3):31. DOI: 10.3390/jdb9030031. [19] Amen M, Liu X, Vadlamudi U, et al.PITX2 and beta-catenin interactions regulate Lef-1 isoform expression[J]. Mol Cell Biol, 2007,27(21):7560-7573. DOI: 10.1128/MCB.00315-07. [20] Sun Z, Yu W, Sanz Navarro M, et al.Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal[J]. Development, 2016,143(22):4115-4126. DOI: 10.1242/dev.138883. [21] Yu W, Sun Z, Sweat Y, et al. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers[J]. Development, 2020,147(11):dev186023. DOI: 10.1242/dev.186023. [22] Vadlamudi U, Espinoza HM, Ganga M, et al.PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter[J]. J Cell Sci, 2005,118(Pt 6):1129-1137. DOI: 10.1242/jcs.01706. [23] Laurikkala J, Kassai Y, Pakkasjärvi L, et al.Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot[J]. Dev Biol, 2003,264(1):91-105. DOI: 10.1016/j.ydbio.2003.08.011. [24] Ahn Y, Sanderson BW, Klein OD, et al.Inhibition of Wnt signaling by wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning[J]. Development, 2010,137(19):3221-3231. DOI: 10.1242/dev.054668. [25] Kassai Y, Munne P, Hotta Y, et al.Regulation of mammalian tooth cusp patterning by ectodin[J]. Science, 2005,309(5743):2067-2070. DOI: 10.1126/science.1116848. [26] Murashima-Suginami A, Kiso H, Tokita Y, et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling[J]. Sci Adv, 2021,7(7):eabf1798. DOI: 10.1126/sciadv.abf1798. [27] Mishima S, Takahashi K, Kiso H, et al.Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice[J]. Sci Rep, 2021,11(1):13674. DOI: 10.1038/s41598-021-93256-y. [28] Wang Y, Li L, Zheng Y, et al.BMP activity is required for tooth development from the lamina to bud stage[J]. J Dent Res, 2012,91(7):690-695. DOI: 10.1177/0022034512448660. [29] Andl T, Ahn K, Kairo A, et al.Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development[J]. Development, 2004,131(10):2257-2268. DOI: 10.1242/dev.01125. [30] Ko SO, Chung IH, Xu X, et al.Smad4 is required to regulate the fate of cranial neural crest cells[J]. Dev Biol, 2007,312(1):435-447. DOI: 10.1016/j.ydbio.2007.09.050. [31] Lee JM, Qin C, Chai OH, et al.MSX1 drives tooth morphogenesis through controlling Wnt signaling activity[J]. J Dent Res, 2022,101(7):832-839. DOI: 10.1177/00220345211070583. [32] Satokata I, Maas R.Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development[J]. Nat Genet, 1994,6(4):348-356. DOI: 10.1038/ng0494-348. [33] Bei M, Maas R.FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development[J]. Development, 1998,125(21):4325-4333. DOI: 10.1242/dev.125.21.4325. [34] Jia S, Zhou J, Gao Y, et al.Roles of Bmp4 during tooth morphogenesis and sequential tooth formation[J]. Development, 2013,140(2):423-432. DOI: 10.1242/dev.081927. [35] Bei M, Kratochwil K, Maas RL.BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development[J]. Development, 2000,127(21):4711-4718. DOI: 10.1242/dev.127.21.4711. [36] Jia S, Kwon HE, Lan Y, et al.Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists[J]. Dev Biol, 2016,420(1):110-119. DOI: 10.1016/j.ydbio.2016.10.001. [37] Kwon HE, Jia S, Lan Y, et al.Activin and Bmp4 signaling converge on Wnt activation during odontogenesis[J]. J Dent Res, 2017,96(10):1145-1152. DOI: 10.1177/0022034517713710. [38] Gao Y, Jiang X, Wei Z, et al.The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: a genetic perspective[J]. Front Genet, 2023,14:1168538. DOI: 10.3389/fgene.2023.1168538. [39] Ahmed HA, El-Kamah GY, Rabie E, et al.Gene mutations of the three ectodysplasin pathway key players (EDA, EDAR, and EDARADD) account for more than 60% of egyptian ectodermal dysplasia: a report of seven novel mutations[J]. Genes (Basel), 2021,12(9):1389. DOI: 10.3390/genes12091389. [40] Zhang H, Kong X, Ren J, et al.A novel EDAR missense mutation identified by whole-exome sequencing with non-syndromic tooth agenesis in a Chinese family[J]. Mol Genet Genomic Med, 2021,9(6):e1684. DOI: 10.1002/mgg3.1684. [41] Gaczkowska A, Abdalla EM, Dowidar KM, et al.De novo EDA mutations: variable expression in two Egyptian families[J]. Arch Oral Biol, 2016,68:21-28. DOI: 10.1016/j.archoralbio.2016.03.015. [42] Zeng B, Lu H, Xiao X, et al.Novel EDA mutation in X-linked hypohidrotic ectodermal dysplasia and genotype-phenotype correlation[J]. Oral Dis, 2015,21(8):994-1000. DOI: 10.1111/odi.12376. [43] Zhang J, Han D, Song S, et al.Correlation between the phenotypes and genotypes of X-linked hypohidrotic ectodermal dysplasia and non-syndromic hypodontia caused by ectodysplasin-A mutations[J]. Eur J Med Genet, 2011,54(4):e377-e382. DOI: 10.1016/j.ejmg.2011.03.005. [44] Mogollón I, Ahtiainen L.Live tissue imaging sheds light on cell level events during ectodermal organ development[J]. Front Physiol, 2020,11:818. DOI: 10.3389/fphys.2020.00818. [45] Abramyan J, Geetha-Loganathan P, Šulcová M, et al.Role of cell death in cellular processes during odontogenesis[J]. Front Cell Dev Biol, 2021,9:671475. DOI: 10.3389/fcell.2021.671475. [46] Ahtiainen L, Uski I, Thesleff I, et al.Early epithelial signaling center governs tooth budding morphogenesis[J]. J Cell Biol, 2016,214(6):753-767. DOI: 10.1083/jcb.201512074. [47] Tucker AS, Headon DJ, Courtney JM, et al.The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development[J]. Dev Biol, 2004,268(1):185-194. DOI: 10.1016/j.ydbio.2003.12.019. [48] Casal ML, Lewis JR, Mauldin EA, et al.Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia[J]. Am J Hum Genet, 2007,81(5):1050-1056. DOI: 10.1086/521988. [49] Choi SJ, Lee JW, Song JH.Dental anomaly patterns associated with tooth agenesis[J]. Acta Odontol Scand, 2017,75(3):161-165. DOI: 10.1080/00016357.2016.1273385. [50] Marra PM, Iorio B, Itro A, et al.Association of tooth agenesis with dental anomalies in young subjects[J]. Oral Maxillofac Surg, 2021,25(1):35-39. DOI: 10.1007/s10006-020-00879-y. [51] Al-Ani AH, Antoun JS, Thomson WM, et al.Hypodontia: an update on its etiology, classification, and clinical management[J]. Biomed Res Int, 2017,2017:9378325. DOI: 10.1155/2017/9378325. [52] Jurek A, Gozdowski D, Czochrowska EM, et al.Effect of tooth agenesis on mandibular morphology and position[J]. Int J Environ Res Public Health, 2021,18(22):11876. DOI: 10.3390/ijerph182211876. [53] Rodrigues AS, Antunes LS, Pinheiro L, et al.Is dental agenesis associated with craniofacial morphology pattern? A systematic review and meta-analysis[J]. Eur J Orthod, 2020,42(5):534-543. DOI: 10.1093/ejo/cjz087. [54] Möller LH, Pradel W, Gedrange T, et al.Prevalence of hypodontia and supernumerary teeth in a German cleft lip with/without palate population[J]. BMC Oral Health, 2021,21(1):60. DOI: 10.1186/s12903-021-01420-7. [55] Phan M, Conte F, Khandelwal KD, et al.Tooth agenesis and orofacial clefting: genetic brothers in arms?[J]. Hum Genet, 2016,135(12):1299-1327. DOI: 10.1007/s00439-016-1733-z. [56] Kantaputra PN, Hutsadaloi A, Kaewgahya M, et al.WNT10B mutations associated with isolated dental anomalies[J]. Clin Genet, 2018,93(5):992-999. DOI: 10.1111/cge.13218. [57] Koskinen S, Keski-Filppula R, Alapulli H, et al.Familial oligodontia and regional odontodysplasia associated with a PAX9 initiation codon mutation[J]. Clin Oral Investig, 2019,23(11):4107-4111. DOI: 10.1007/s00784-019-02849-5. [58] Yu M, Liu Y, Liu H, et al.Distinct impacts of bi-allelic WNT10A mutations on the permanent and primary dentitions in odonto-onycho-dermal dysplasia[J]. Am J Med Genet A, 2019,179(1):57-64. DOI: 10.1002/ajmg.a.60682. [59] Abid MF, Simpson MA, Barbosa IA, et al.WNT10A mutation results in severe tooth agenesis in a family of three sisters[J]. Orthod Craniofac Res, 2018,21(3):153-159. DOI: 10.1111/ocr.12231. [60] Ruiz-Heiland G, Lenz S, Bock N, et al.Prevalence of WNT10A gene mutations in non-syndromic oligodontia[J]. Clin Oral Investig, 2019,23(7):3103-3113. DOI: 10.1007/s00784-018-2731-4. [61] Park H, Song JS, Shin TJ, et al.WNT10A mutations causing oligodontia[J]. Arch Oral Biol, 2019,103:8-11. DOI: 10.1016/j.archoralbio.2019.05.007. [62] Williams M, Zeng Y, Chiquet B, et al.Functional characterization of ATF1, GREM2 AND WNT10B variants associated with tooth agenesis[J]. Orthod Craniofac Res, 2021,24(4):486-493. DOI: 10.1111/ocr.12462. [63] Zeng Y, Baugh E, Akyalcin S, et al.Functional effects of WNT10A rare variants associated with tooth agenesis[J]. J Dent Res, 2021,100(3):302-309. DOI: 10.1177/0022034520962728. [64] Fauzi NH, Ardini YD, Zainuddin Z, et al.A review on non-syndromic tooth agenesis associated with PAX9 mutations[J]. Jpn Dent Sci Rev, 2018,54(1):30-36. DOI: 10.1016/j.jdsr.2017.08.001. [65] Xin T, Zhang T, Li Q, et al.A novel mutation of MSX1 in oligodontia inhibits odontogenesis of dental pulp stem cells via the ERK pathway[J]. Stem Cell Res Ther, 2018,9(1):221. DOI: 10.1186/s13287-018-0965-3. [66] Zheng J, Yu M, Liu H, et al.Novel MSX1 variants identified in families with nonsyndromic oligodontia[J]. Int J Oral Sci, 2021,13(1):2. DOI: 10.1038/s41368-020-00106-0. [67] Bonczek O, Bielik P, Krej [68] Ma T, Liu Y, Zhao X, et al.A novel mutation of MSX1 inherited from maternal mosaicism causes a severely affected child with nonsyndromic oligodontia[J]. Ann Hum Genet, 2020,84(1):97-101. DOI: 10.1111/ahg.12348. [69] Yang L, Liang J, Yue H, et al.Two novel mutations in MSX1 causing oligodontia[J]. PLoS One, 2020,15(1):e0227287. DOI: 10.1371/journal.pone.0227287. [70] Dinckan N, Du R, Petty LE, et al.Whole-exome sequencing identifies novel variants for tooth agenesis[J]. J Dent Res, 2018,97(1):49-59. DOI: 10.1177/0022034517724149. [71] Moosa S, Yamamoto GL, Garbes L, et al.Autosomal-recessive mutations in MESD cause osteogenesis imperfecta[J]. Am J Hum Genet, 2019,105(4):836-843. DOI: 10.1016/j.ajhg.2019.08.008. [72] Yu M, Fan Z, Wong SW, et al.Lrp6 dynamic expression in tooth development and mutations in oligodontia[J]. J Dent Res, 2021,100(4):415-422. DOI: 10.1177/0022034520970459. [73] Lammi L, Arte S, Somer M, et al.Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer[J]. Am J Hum Genet, 2004,74(5):1043-1050. DOI: 10.1086/386293. [74] Hlouskova A, Bielik P, Bonczek O, et al.Mutations in AXIN2 gene as a risk factor for tooth agenesis and cancer: a review[J]. Neuro Endocrinol Lett, 2017,38(3):131-137. [75] Longtin R.Chew on this: mutation may be responsible for tooth loss, colon cancer[J]. J Natl Cancer Inst, 2004,96(13):987-989. DOI: 10.1093/jnci/96.13.987. [76] Paranjyothi MV, Kumaraswamy KL, Begum LF, et al.Tooth agenesis: a susceptible indicator for colorectal cancer?[J]. J Cancer Res Ther, 2018,14(3):527-531. DOI: 10.4103/0973-1482.168997. [77] Bonczek O, Balcar VJ, Šerý O.PAX9 gene mutations and tooth agenesis: a review[J]. Clin Genet, 2017,92(5):467-476. DOI: 10.1111/cge.12986. [78] Bhol CS, Patil S, Sahu BB, et al.The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis[J]. Biochim Biophys Acta Rev Cancer, 2021,1876(1):188561. DOI: 10.1016/j.bbcan.2021.188561. [79] Küchler EC, Lips A, Tannure PN, et al.Tooth agenesis association with self-reported family history of cancer[J]. J Dent Res, 2013,92(2):149-155. DOI: 10.1177/0022034512468750. [80] Takahashi K, Kiso H, Murashima-Suginami A, et al.Development of tooth regenerative medicine strategies by controlling the number of teeth using targeted molecular therapy[J]. Inflamm Regen, 2020,40:21. DOI: 10.1186/s41232-020-00130-x. |
[1] | 赵昱, 昝冰欣, 代庆刚. 先天缺牙种植体留存率的系统性文献回顾[J]. 中国口腔种植学杂志, 2024, 29(3): 242-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||