Chinese Journal of Oral Implantology ›› 2025, Vol. 30 ›› Issue (3): 288-295.DOI: 10.12337/zgkqzzxzz.2025.06.014
• Reviews • Previous Articles Next Articles
Li Guangda1,2, Ding Mingchao2, Chang Xin4, Jing Boya2, Wang Jingfu2,3, Wang Weiqi2
Received:
2024-12-31
Published:
2025-06-27
Contact:
Wang Jingfu, Email: Supported by:
Li Guangda, Ding Mingchao, Chang Xin, Jing Boya, Wang Jingfu, Wang Weiqi. Advances in barrier membranes for guided bone regeneration in oral applications[J]. Chinese Journal of Oral Implantology, 2025, 30(3): 288-295.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zgkqzzxzz.cndent.com/EN/10.12337/zgkqzzxzz.2025.06.014
[1] Kofina V, Monfaredzadeh M, Rawal SY, et al.Patient-reported outcomes following guided bone regeneration: correlation with clinical parameters[J]. J Dent, 2023, 136:104605. DOI: 10.1016/j.jdent.2023.104605. [2] Omar O, Elgali I, Dahlin C, et al.Barrier membranes: more than the barrier effect?[J]. J Clin Periodontol, 2019, 46(Suppl 21):S103-S123. DOI: 10.1111/jcpe.13068. [3] Elgali I, Turri A, Xia W, et al.Guided bone regeneration using resorbable membrane and different bone substitutes: early histological and molecular events[J]. Acta Biomater, 2016, 29:409-423. DOI: 10.1016/j.actbio.2015.10.005. [4] Lima LL, Gonçalves PF, Sallum EA, et al.Guided tissue regeneration may modulate gene expression in periodontal intrabony defects: a human study[J]. J Periodontal Res, 2008, 43(4):459-464. DOI: 10.1111/j.1600-0765.2008.01094.x. [5] Elgali I, Omar O, Dahlin C, et al.Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017, 125(5):315-337. DOI: 10.1111/eos.12364. [6] Turri A, Elgali I, Vazirisani F, et al.Guided bone regeneration is promoted by the molecular events in the membrane compartment[J]. Biomaterials, 2016, 84:167-183. DOI: 10.1016/j.biomaterials.2016.01.034. [7] Kitaori T, Ito H, Schwarz EM, et al.Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823. DOI: 10.1002/art.24330. [8] Xing Z, Lu C, Hu D, et al.Multiple roles for CCR2 during fracture healing[J]. Dis Model Mech, 2010, 3(7-8):451-458. DOI: 10.1242/dmm.003186. [9] Giragosyan K, Chenchev I, Ivanova V, et al.Immunological response to nonresorbable barrier membranes used for guided bone regeneration and formation of pseudo periosteum: a narrative review[J]. Folia Med (Plovdiv), 2022, 64(1):13-20. DOI: 10.3897/folmed.64.e60553. [10] Gou M, Wang H, Xie H, et al.Macrophages in guided bone regeneration: potential roles and future directions[J]. Front Immunol, 2024, 15:1396759. DOI: 10.3389/fimmu.2024.1396759. [11] Maiti S, Shaw S, Shit GC.Reply to the comments on the article "fractional order model of thermo-solutal and magnetic nanoparticles transport for drug delivery applications" published in colloids and surfaces B: biointerfaces, 203(2021)111754[J]. Colloids Surf B Biointerfaces, 2023, 222:113107. DOI:10.1016/j.colsurfb.2022.113107. [12] Herten M, Jung RE, Ferrari D, et al.Biodegradation of different synthetic hydrogels made of polyethylene glycol hydrogel/RGD-peptide modifications:an immunohistochemical study in rats[J]. Clin Oral Implants Res, 2009, 20(2):116-125. DOI: 10.1111/j.1600-0501.2008.01622.x. [13] Barbeck M, Lorenz J, Kubesch A, et al.Porcine dermis-derived collagen membranes induce implantation bed vascularization via multinucleated giant cells:a physiological reaction?[J]. J Oral Implantol, 2015, 41(6):e238-e251. DOI: 10.1563/aaid-joi-D-14-00274. [14] Kapogianni E, Alkildani S, Radenkovic M, et al.The early fragmentation of a bovine dermis-derived collagen barrier membrane contributes to transmembraneous vascularization-a possible paradigm shift for guided bone regeneration[J]. Membranes (Basel), 2021, 11(3):185. DOI: 10.3390/membranes11030185. [15] Lindner C, Alkildani S, Stojanovic S, et al.In vivo biocompatibility analysis of a novel barrier membrane based on bovine dermis-derived collagen for guided bone regeneration (GBR)[J]. Membranes (Basel), 2022, 12(4):378. DOI: 10.3390/membranes12040378. [16] Caballé-Serrano J, Abdeslam-Mohamed Y, Munar-Frau A, et al.Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: a systematic review[J]. Arch Oral Biol, 2019, 100:57-68. DOI: 10.1016/j.archoralbio.2019.02.006. [17] Ghensi P, Stablum W, Bettio E, et al.Management of the exposure of a dense PTFE (d-PTFE) membrane in guided bone regeneration (GBR): a case report[J]. Oral Implantol (Rome), 2017, 10(3):335-342. DOI: 10.11138/orl/2017.10.3.335. [18] Lim G, Lin GH, Monje A, et al.Wound healing complications following guided bone regeneration for ridge augmentation: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2018, 33(1):41-50. DOI: 10.11607/jomi.5581. [19] Urban IA, Montero E, Amerio E, et al.Techniques on vertical ridge augmentation: indications and effectiveness[J]. Periodontol 2000, 2023, 93(1):153-182. DOI: 10.1111/prd.12471. [20] Gao Y, Wang S, Shi B, et al.Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: a review[J]. Polymers (Basel), 2022, 14(5):871. DOI: 10.3390/polym14050871. [21] Park YW, Kim SG.Comparison of physical property and in vivo bioactivity: silkworm-cocoon-derived silk membrane, collagen membrane, and polytetrafluoroethylene membrane for guided bone regeneration[J]. J Oral Maxillofac Surg, 2014,72(9):e206.DOI:10.1016/j.joms.2014. 06.370. [22] Zhang M, Zhou Z, Yun J, et al.Effect of different membranes on vertical bone regeneration: a systematic review and network meta-analysis[J]. Biomed Res Int, 2022, 2022:7742687. DOI: 10.1155/2022/7742687. [23] Ma FB, Xia XY, Tang B.Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration[J]. Carbohydr Polym, 2019, 213:266-275. DOI: 10.1016/j.carbpol.2019.02.068. [24] Wang Y, Yang Z, Chen X, et al.Silk fibroin hydrogel membranes prepared by a sequential cross-linking strategy for guided bone regeneration[J]. J Mech Behav Biomed Mater, 2023, 147:106133. DOI: 10.1016/j.jmbbm.2023.106133. [25] Jazayeri HE, Tahriri M, Razavi M, et al.A current overview of materials and strategies for potential use in maxillofacial tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1):913-929. DOI: 10.1016/j.msec.2016.08.055. [26] Tsai SW, Yu WX, Huang PA, et al.Fabrication and characteristics of PCL membranes containing strontium-substituted hydroxyapatite nanofibers for guided bone regeneration[J]. Polymers (Basel), 2019, 11(11):1761. DOI: 10.3390/polym11111761. [27] Kubásek J, Vojtěch D, Jablonská E, et al.Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58:24-35. DOI: 10.1016/j.msec.2015.08.015. [28] Zhang Y, Yan Y, Xu X, et al.Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019,99:1021-1034. DOI: 10.1016/j.msec.2019.01.120. [29] Yu Z, Yu S, Laijun L, et al.Construction of ultrasmooth PTFE membrane for preventing bacterial adhesion and cholestasis[J]. Colloids Surf B Biointerfaces, 2022, 213:112332. DOI: 10.1016/j.colsurfb.2022.112332. [30] Kameda T, Ohkuma K, Oka S.Polytetrafluoroethylene (PTFE): a resin material for possible use in dental prostheses and devices[J]. Dent Mater J, 2019, 38(1):136-142. DOI: 10.4012/dmj.2018-088. [31] Sattar MM, Patel M, Alani A.Clinical applications of polytetrafluoroethylene (PTFE) tape in restorative dentistry[J]. Br Dent J, 2017, 222(3):151-158. DOI: 10.1038/sj.bdj.2017.110. [32] Leech J, Golub S, Allan W, et al.Non-pathogenic escherichia coli biofilms: effects of growth conditions and surface properties on structure and curli gene expression[J]. Arch Microbiol, 2020, 202(6):1517-1527. DOI: 10.1007/s00203-020-01864-5. [33] Korzinskas T, Jung O, Smeets R, et al.In vivo analysis of the biocompatibility and macrophage response of a non-resorbable PTFE membrane for guided bone regeneration[J]. Int J Mol Sci, 2018, 19(10):2952. DOI: 10.3390/ijms19102952. [34] Tan X, Rodrigue D.A review on porous polymeric membrane preparation. Part II: production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene[J]. Polymers (Basel), 2019,11(8):1310. DOI: 10.3390/polym11081310. [35] Soldatos NK, Stylianou P, Koidou VP, et al.Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration[J]. Quintessence Int, 2017, 48(2):131-147. DOI: 10.3290/j.qi.a37133. [36] Calciolari E, Corbella S, Gkranias N, et al.Efficacy of biomaterials for lateral bone augmentation performed with guided bone regeneration. A network meta-analysis[J]. Periodontol 2000, 2023, 93(1):77-106. DOI: 10.1111/prd.12531. [37] Vroom MG, Gründemann LJ, Gallo P.Clinical classification of healing complications and management in guided bone regeneration procedures with a nonresorbable d-PTFE membrane[J]. Int J Periodontics Restorative Dent, 2022, 42(3):419-427. DOI: 10.11607/prd.5590. [38] Elshahat A, Inoue N, Marti G, et al.Role of guided bone regeneration principle in preventing fibrous healing in distraction osteogenesis at high speed: experimental study in rabbit mandibles[J]. J Craniofac Surg, 2004, 15(6):916-921. DOI: 10.1097/00001665-200411000-00005. [39] Windisch P, Orban K, Salvi GE, et al.Vertical-guided bone regeneration with a titanium-reinforced d-PTFE membrane utilizing a novel split-thickness flap design: a prospective case series[J]. Clin Oral Investig, 2021, 25(5):2969-2980. DOI: 10.1007/s00784-020-03617-6. [40] Cucchi A, Vignudelli E, Napolitano A, et al.Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial[J]. Clin Implant Dent Relat Res, 2017, 19(5):821-832. DOI: 10.1111/cid.12520. [41] Lisoń-Kubica J, Taratuta A, Goldsztajn K, et al.Modern methods of surface modification for new-generation titanium alloys[J]. Acta Bioeng Biomech, 2022, 24(4):147-158. [42] 宿玉成,任斌. 3D 打印个性化钛网支撑的引导骨再生术后钛网暴露的原因、预防与治疗[J]. 中国口腔种植学杂志, 2025,30(1):5-12. DOI: 10.12337/zgkqzzxzz. 2025. 02.003. Su YC, Ren B.Causes, prevention and treatment of titanium mesh exposure after 3D printing individualized titanium mesh supported guided bone regeneration[J]. Chin J Oral Implantol, 2025, 30(1): 5-12.DOI: 10.12337/zgkqzzxzz.2025.02.003. [43] 熊振杰,魏永祥,刘倩,等. 3D打印个性化钛网用于修复严重牙槽骨缺损的临床效果——一项回顾性病例系列研究[J]. 中国口腔种植学杂志, 2025, 30(1): 27-34. DOI: 10.12337/zgkqzzxzz.2025.02.006. Xiong ZJ, Wei YX, Liu Q, et al.Clinical outcomes of 3D printing individualized titanium mesh for severe alveolar bone defects: a retrospective series[J]. Chin J Oral Implantol, 2025, 30(1): 27-34.DOI: 10.12337/zgkqzzxzz.2025.02.006. [44] Cucchi A, Vignudelli E, Franceschi D, et al.Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes.A randomized clinical trial[J]. Clin Oral Implants Res, 2021, 32(12):1411-1424. DOI: 10.1111/clr.13841. [45] Li S, Zhao J, Xie Y, et al.Hard tissue stability after guided bone regeneration: a comparison between digital titanium mesh and resorbable membrane[J]. Int J Oral Sci, 2021, 13(1):37. DOI: 10.1038/s41368-021-00143-3. [46] Bai L, Ji P, Li X, et al.Mechanical characterization of 3D-printed individualized Ti-mesh (membrane) for alveolar bone defects[J]. J Healthc Eng, 2019, 2019:4231872. DOI: 10.1155/2019/4231872. [47] Cucchi A, Vignudelli E, Fiorino A, et al.Vertical ridge augmentation (VRA) with Ti-reinforced d-PTFE membranes or Ti meshes and collagen membranes: 1-year results of a randomized clinical trial[J]. Clin Oral Implants Res, 2021, 32(1):1-14. DOI: 10.1111/clr.13673. [48] Ovcharenko N, Greenwell H, Katwal D, et al.A comparison of the effect of barrier membranes on clinical and histologic hard and soft tissue healing with ridge preservation[J]. Int J Periodontics Restorative Dent, 2020, 40(3):365-371. DOI: 10.11607/prd.4120. [49] Yang F, Xu L, Guo G, et al.Visible light-induced cross-linking of porcine pericardium for the improvement of endothelialization, anti-tearing, and anticalcification properties[J]. J Biomed Mater Res A, 2022, 110(1):31-42. DOI: 10.1002/jbm.a.37263. [50] Kumari C, Ramakrishnan T, Devadoss P, et al.Use of collagen membrane in the treatment of periodontal defects distal to mandibular second molars following surgical removal of impacted mandibular third molars: a comparative clinical study[J]. Biology (Basel), 2021, 10(12):1348. DOI: 10.3390/biology10121348. [51] Chen W, Liu K, Liao X, et al.Harmonizing thickness and permeability in bone tissue engineering: a novel silk fibroin membrane inspired by spider silk dynamics[J]. Adv Mater, 2024, 36(13):e2310697. DOI: 10.1002/adma.202310697. [52] Caballé-Serrano J, Sawada K, Miron RJ, et al.Collagen barrier membranes adsorb growth factors liberated from autogenous bone chips[J]. Clin Oral Implants Res, 2017, 28(2):236-241. DOI: 10.1111/clr.12789. [53] Gielkens PF, Schortinghuis J, de Jong JR, et al. Vivosorb, Bio-Gide, and Gore-Tex as barrier membranes in rat mandibular defects: an evaluation by microradiography and micro-CT[J]. Clin Oral Implants Res, 2008, 19(5):516-521. DOI: 10.1111/j.1600-0501.2007.01511.x. [54] Sela MN, Babitski E, Steinberg D, et al.Degradation of collagen-guided tissue regeneration membranes by proteolytic enzymes of Porphyromonas gingivalis and its inhibition by antibacterial agents[J]. Clin Oral Implants Res, 2009, 20(5):496-502. DOI: 10.1111/j.1600-0501.2008.01678.x. [55] Troy E, Tilbury MA, Power AM, et al.Nature-based biomaterials and their application in biomedicine[J]. Polymers (Basel), 2021, 13(19):3321. DOI: 10.3390/polym13193321. [56] Tavelli L, McGuire MK, Zucchelli G, et al. Extracellular matrix-based scaffolding technologies for periodontal and peri-implant soft tissue regeneration[J]. J Periodontol, 2020, 91(1):17-25. DOI: 10.1002/JPER.19-0351. [57] Chatterjee S, G K. A Novel candidate for guided tissue regeneration: chitosan and eggshell membrane[J]. Cureus, 2023, 15(11):e48930. DOI: 10.7759/cureus.48930. [58] Zou S, Yao X, Shao H, et al.Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration[J]. Acta Biomater, 2022, 153:68-84. DOI: 10.1016/j.actbio.2022.09.021. [59] Saleem M, Rasheed S, Yougen C.Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration[J]. Sci Technol Adv Mater, 2020, 21(1):242-266. DOI: 10.1080/14686996.2020.1748520. [60] Song JM, Shin SH, Kim YD, et al.Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis[J]. Int J Oral Sci, 2014, 6(2):87-93. DOI: 10.1038/ijos.2014.16. [61] Xie X, Shi X, Wang S, et al.Effect of attapulgite-doped electrospun fibrous PLGA scaffold on pro-osteogenesis and barrier function in the application of guided bone regeneration[J]. Int J Nanomedicine, 2020, 15:6761-6777. DOI: 10.2147/IJN.S244533. [62] Castro A, Diba M, Kersten M, et al.Development of a PCL-silica nanoparticles composite membrane for guided bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2018, 85:154-161. DOI: 10.1016/j.msec.2017.12.023. [63] Rahman M, Dutta NK, Roy Choudhury N.Magnesium alloys with tunable interfaces as bone implant materials[J]. Front Bioeng Biotechnol, 2020, 8:564. DOI: 10.3389/fbioe.2020.00564. [64] Dutta S, Gupta S, Roy M.Recent developments in magnesium metal-matrix composites for biomedical applications: a review[J]. ACS Biomater Sci Eng, 2020, 6(9):4748-4773. DOI: 10.1021/acsbiomaterials. 0c00678. [65] Chen K, Wang Y, Tang H, et al.Fabrication of a nanoscale magnesium/copper metal-organic framework on Zn-based guided bone generation membranes for enhancing osteogenesis, angiogenesis, and bacteriostasis properties[J]. ACS Appl Mater Interfaces, 2024,16(5):5648-5665. DOI: 10.1021/acsami.3c16970. [66] 任立志, 孙睿. 引导骨再生屏障膜材料临床应用进展[J].口腔疾病防治, 2020, 28(6):404-408.DOI: 10.12016/j.issn.2096-1456.2020.06.012. Ren LZ,Sun R.New progress in the clinical application of GBR membrane materials[J]. J Prev Treat Stomatol Dis,2020, 28(6):404-408. DOI: 10.12016/j.issn.2096-1456.2020.06.012. [67] Urban IA, Montero E, Monje A, et al. Effectiveness of vertical ridge augmentation interventions: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019,46 Suppl 21:319-339. DOI: 10.1111/jcpe.13061. [68] Urban I.Vertical and horizontal ridge augmentation: new perspectives[M]. Berlin: Quintessenz Publishing, 2017:117-118. [69] Windisch P, Orban K, Salvi GE, et al.Vertical-guided bone regeneration with a titanium-reinforced d-PTFE membrane utilizing a novel split-thickness flap design: a prospective case series[J]. Clin Oral Investig, 2021, 25(5):2969-2980. DOI: 10.1007/s00784-020-03617-6. [70] 《中国口腔种植学杂志》编辑部. 钛网支撑的引导骨再生的专家共识[J]. 中国口腔种植学杂志, 2024, 29(2):95-100. DOI: 10.12337/zgkqzzxzz.2024.04.001. Editorial Board of Chinese Journal of Oral Implantology. Expert consensus on titanium mesh supported guided bone regeneration[J]. Chin J Oral Implant, 2024, 29(2): 95-100.DOI: 10.12337/zgkqzzxzz.2024. 04.001. [71] Alavi SE, Gholami M, Shahmabadi HE, et al.Resorbable GBR scaffolds in oral and maxillofacial tissue engineering: design, fabrication, and applications[J]. J Clin Med, 2023, 12(22):6962. DOI: 10.3390/jcm12226962. [72] Wan S, Chen Y, Huang C, et al.Scalable ultrastrong MXene films with superior osteogenesis[J]. Nature, 2024,634(8036):1103-1110. DOI: 10.1038/s41586-024-08067-8. [73] Zhu K, Li R, Yin S, et al.A novel ultrasound-driven piezoelectric GBR membrane dispersed with boron nitride nanotubes promotes bone regeneration and anti-bacterial properties[J]. Mater Today Bio, 2025, 30:101418. DOI: 10.1016/j.mtbio.2024.101418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||