中国口腔种植学杂志 ›› 2025, Vol. 30 ›› Issue (2): 135-143.DOI: 10.12337/zgkqzzxzz.2025.04.007

• 论著-基础研究 • 上一篇    下一篇

新型3D打印无牙颌种植临时固定义齿在不同方向上受力的有限元分析

张传锴1, 张佳园3, 潘羽磊4, 陈庆生3, 林海燕1,2   

  1. 1杭州医学院存济口腔医学院 311399;
    2杭州口腔医院平海院区 310000;
    3杭州口腔医院城西院区 310000;
    4浙江大学医学院附属第二医院 310000
  • 收稿日期:2025-01-07 出版日期:2025-04-30 发布日期:2025-04-21
  • 通讯作者: 林海燕,Email:lhaiyanlily@163.com,电话:0571-88868818
  • 作者简介:张传锴 硕士研究生在读、执业医师,研究方向:口腔种植材料、种植体周炎与免疫细胞稳态关系
    林海燕 教授、主任医师、硕士研究生导师,研究方向:新型生物骨、数字化口腔种植以及种植体周炎
  • 基金资助:
    浙江省2023年度“领雁”研发攻关计划(2023C03070)

Finite element analysis of a novel 3D-printed temporary fixed prosthesis for edentulous jaws under multidirectional loading

Zhang Chuankai1, Zhang Jiayuan3, Pan Yulei4, Chen Qingsheng2, Lin Haiyan1,2   

  1. 1Savaid Stomatology School of Hangzhou Medical College, Hangzhou 311399, Zhejiang, China;
    2Hangzhou Stomatology Hospital, Pinghai Campus, Hangzhou 310000, Zhejiang, China;
    3Hangzhou Stomatological Hospital, Chengxi Branch, Hangzhou 310000, Zhejiang, China;
    4The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
  • Received:2025-01-07 Online:2025-04-30 Published:2025-04-21
  • Contact: Lin Haiyan, Email: lhaiyanlily@163.com, Tel: 0086-571-88868818
  • Supported by:
    The Zhejiang Province 2023 Annual "Leading Geese" R & D Program (2023C03070)

摘要: 目的 利用有限元分析方法探究了一种用于制作新型3D打印无牙颌种植临时固定义齿的材料,其性能与非3D打印传统材料聚醚醚酮(polyetheretherketone,PEEK)和3D打印传统材料聚乳酸(polylactic acid,PLA)对比,在计算机上虚拟制作成无牙颌种植临时固定义齿后加载不同方向应力情况下的生物力学分析。方法 选择2024年5月于杭州口腔医院平海院区的无牙颌种植临时固定修复患者1例,建立无牙颌下颌骨三维有限元模型,在模型上对不同材料加力赋值:对PEEK(A1)、PLA 3D打印树脂(A2)、增材制造用3D打印光固化临时冠桥树脂(A3)制作冠桥树脂的前牙和后牙分别施加150 N、方向不同的静载荷力,加力的方向分为后牙垂直向加力(G1)、右侧后牙颊向舌加力(G2)、右侧后牙舌向颊加力(G3)、左侧后牙颊向舌加力(G4)、左侧后牙舌向颊加力(G5)、前牙垂直向加力(G6)、前牙唇向舌加力(G7)、前牙舌向唇加力(G8)。利用ANSYS 2021 R1软件计算得出不同材料模型的最大Von Mises应力值(MPa)、模型最大总变形量(mm)、模型最大Von Mises应变量(mm)及应力分布云图。结果 ①A1在所有方向上的模型最大Von Mises应力值均小于A2,A3在5个方向上的模型最大Von Mises应力值均小于A2;②A3在7个方向上的模型最大总变形量、模型最大Von Mises应变量均小于A1和A2,但在G6方向上A3最大总变形量、模型最大Von Mises应变量最大;③前牙方向上,模型最大总变形量主要分布在切缘,模型最大Von Mises应变量较均匀分布在前牙各部位,模型最大Von Mises应力值主要分布在桥体连接处;④后牙方向上,模型最大总变形量主要分布在下颌第二磨牙后缘,模型最大Von Mises应变量较为均匀分布在后牙各部位,模型最大Von Mises应力值主要分布在与种植体基台连接处部位。结论 新型无牙颌3D打印种植临时固定义齿的力学特性部分优于PEEK和PLA 3D打印树脂。

关键词: 口腔种植, 有限元分析, 临时固定义齿, 无牙颌, 3D打印

Abstract: Objective This study aimed to investigate the biomechanical properties of a novel 3D-printed temporary fixed denture for edentulous jaws using finite element analysis, and to compare its mechanical performance with that of conventional non-3D-printed polyetheretherketone (PEEK) and 3D-printed polylactic acid (PLA). Methods A three-dimensional finite element model of a mandible with complete edentulism was established based on a patient treated with an implant-supported temporary fixed prosthesis at Hangzhou Stomatological Hospital (Pinghai Campus) in May 2024. Three materials were analyzed: polyetheretherketone (PEEK, A1), polylactic acid (PLA, A2), and 3D-printed light-curing temporary crown and bridge resin for additive manufacturing (A3). A static load of 150 N was applied to anterior and posterior crowns and bridges in eight different directions: vertical load on posterior teeth (G1), right posterior buccal-to-lingual load (G2), right posterior lingual-to-buccal load (G3), left posterior buccal-to-lingual load (G4), left posterior lingual-to-buccal load (G5), vertical load on anterior teeth (G6), anterior labial-to-lingual load (G7), and anterior lingual-to-labial load( G8). Finite element analyses were performed using ANSYS 2021 R1 to evaluate the maximum Von Mises stress (MPa), maximum total deformation (mm), maximum Von Mises strain (mm), and stress distribution maps for each material. Results ①The maximum Von Mises stress of A1 (PEEK) was lower than A2 (PLA) in all directions, and A3 exhibited lower Von Mises stress than A2 in five directions.② A3 demonstrated lower maximum total deformation and Von Mises strain than A1 and A2 in seven directions; however, in direction G6 (vertical load on anterior teeth), A3 exhibited the largest total deformation and Von Mises strain. ③For anterior loading, the greatest deformation was concentrated at the incisal edge, with Von Mises strain evenly distributed across the anterior teeth and stress concentrated around the connector of the prosthesis.④For posterior loading, the greatest deformation was located at the distal margin of the mandibular second molar, with relatively uniform strain distribution in posterior regions, and peak stress located at the implant-abutment connection. Conclusion The novel 3D-printed temporary fixed denture for edentulous jaws demonstrated partially superior mechanical properties compared to both PEEK and PLA materials under simulated functional loading.

Key words: Oral implant, Finite element analysis, Temporary fixed prosthesis, Edentulous jaw, 3D printing