中国口腔种植学杂志 ›› 2025, Vol. 30 ›› Issue (1): 13-18.DOI: 10.12337/zgkqzzxzz.2025.02.004

• “3D 打印个性化钛网”重点栏目 • 上一篇    下一篇

个性化钛网辅助修复大范围下颌牙槽骨缺损的静态力学分析

王怀升1,2, 韩泽奎1, 臧旖欣1, 宋振宇1, 宋颐函1,2, 孙子惠1,2, 王心彧1   

  1. 1黑龙江省口腔生物医学材料及临床应用重点实验室 佳木斯大学口腔医学工程实验中心 佳木斯大学附属口腔医院 佳木斯大学口腔医学院 154002;
    2佳木斯大学 154007
  • 收稿日期:2024-11-22 出版日期:2025-02-28 发布日期:2025-02-24
  • 通讯作者: 王心彧,Email:wangxinyu@jmsu.edu.cn,电话:0454-8625654
  • 作者简介:王怀升,硕士研究生在读,研究方向:数字化口腔种植、种植辅助设备研发;王心彧,主任医师、硕士研究生导师,研究方向:数字化口腔种植、种植辅助设备研发
  • 基金资助:
    黑龙江省教育厅基本科研业务费人才培养(2023-KYYWF-0613); 黑龙江省卫生健康委科研课题(20230202080425)

Static mechanical analysis of individualized titanium mesh for restoring extensive mandible alveolar bone defects

Wang Huaisheng1,2, Han Zekui1, Zang Yixin1, Song Zhenyu1, Song Yihan1,2, Sun Zihui1,2, Wang Xinyu1   

  1. 1Key Laboratory of Oral Biomaterial Materials and Clinical Application, Heilongjiang Province & Experimental Center For Stomatological Engineering, Jiamusi University & Affliliated Stomatological Hospital of Jiamusi University & Stomatology Collage of Jiamusi University, Jiamusi 154002,China;
    2Jiamusi University, Jiamusi 154007,China
  • Received:2024-11-22 Online:2025-02-28 Published:2025-02-24
  • Contact: Wang Xinyu, Email: wangxinyu@jmsu.edu.cn, Tel: 0086-454-8625654
  • Supported by:
    Talent Cultivation of Basic Research Operating Expenses of Heilongjiang Provincial Department of Education(2023-KYYWF-0613); Scientific Research Project of Heilongjiang Provincial Health and Wellness Commission (20230202080425)

摘要: 目的 利用三维有限元分析方法,探究不同固位钉数目和位置对3D打印个性化钛网修复大范围骨缺损时的生物力学性能影响。方法 构建数字化大范围下颌牙槽骨缺损模型,应用3-Matic 15和Geomagic Wrap 2021软件对模型进行虚拟骨增量,制作个性化钛网,相同钛网依据不同固位钉数目和位置分为5个模型:A:4颗固位钉分别位于颊侧近中、颊侧正中、下颌升支和舌侧;B:3颗固位钉分别位于颊侧近中、颊侧正中和下颌升支;C:2颗固位钉分别位于颊侧近中和颊侧正中;D:2颗固位钉分别位于颊侧近中和下颌升支;E:2颗固位钉分别位于颊侧正中和下颌升支。构建有限元分析模型,分析各组3D打印个性化钛网的位移和应力。结果 利用4颗固位钉的钛网,整体位移量较小,最大位移量为0.088 mm,能够充分保护内部骨增量材料;使用3颗固位钉的钛网,其颊侧及牙槽嵴顶的位移相对均匀,由于舌侧缺少固位钉,位移量较大,集中在舌侧的远中区,最大位移量为0.263 mm。3组使用2颗固位钉的模型中:固位钉位于颊侧近中和颊侧正中的模型,钛网的远中无固位钉,距固位钉越远的游离端位移量越大,最大数值达到3.255 mm;固位钉位于颊侧近中和下颌升支的模型,固位钉分别位于钛网近远中两端,此钛网跨度长,在受到载荷后钛网中间段向下沉降较大,两侧逐渐递减,整段钛网均匀变形,近中游离端受到上翘的力,位移最大为0.728 mm;固位钉位于颊侧正中和下颌升支的模型,近中悬臂梁较长,承受载荷后,越偏近中变形量越大,最大变形量为3.823 mm。因此,使用4颗固位钉钛网以及使用固位钉位于颊侧近中、正中钉钛网的等效应力分布均匀,无明显应力集中;使用3颗固位钉钛网的应力集中分布在其颊侧及固位钉周围;固位钉位于颊侧近中、下颌升支的钛网和固位钉位于颊侧正中、下颌升支的钛网应力分布均集中在2颗固位钉周围。A、B、C、D、E 5组钛网的最大应力分别为:183.29、451.30、722.22、904.84和1 462.40 MPa。结论 固位钉的数目越多,个性化钛网负载下的位移越少;固位钉数量相同时,固位钉的位置对个性化钛网的移位有着显著影响。

关键词: 个性化钛网, 引导骨再生, 三维有限元分析, 骨增量

Abstract: Objective To investigate the biomechanical effects of varying retention pin numbers and positions on 3D printed individualized titanium mesh used for restoring extensive bone defects through finite element analysis. Methods A digital model of extensive bone defects in the mandible was constructed. Virtual bone augmentation was performed using 3-Matic 15 and Geomagic Wrap 2021 software, followed by the design of individualized titanium meshes. Five models with different retention pin numbers and positions were analyzed: (A) four retention pins (buccal mesial, buccal median, mandibular ramus, and lingual side); (B) three retention pins (buccal mesial, buccal median, mandibular ramus); (C) two retention pins (buccal mesial, buccal median); (D) two retention pins (buccal mesial, mandibular ramus); (E) two retention pins (buccal median, mandibular ramus). Finite element analysis models were constructed to evaluate the displacement and stress distribution of the titanium meshes in each group. Results Titanium mesh with four retention pins exhibited the smallest overall displacement (maximum: 0.088 mm), effectively protecting the internal bone graft material. The mesh with three retention pins showed relatively uniform displacement on the buccal side and alveolar ridge crest; however, the absence of lingual-side retention pins resulted in larger displacements, concentrated in the distal lingual area (maximum: 0.263 mm). In the three models with two retention pins, when the pins were located at the buccal mesial and median, the absence of retention pins in the distal regions led to increasing displacement as the distance from the pins increased, with a maximum displacement of 3.255 mm. In the model with retention pins at the buccal mesial and mandibular ramus, the long span of the titanium mesh caused downward deformation in the central section under load, with the deformation gradually decreasing toward both ends, while the free mesial end experienced upward buckling forces, resulting in a maximum displacement of 0.728 mm. In the model where the pins were located at the buccal median and mandibular ramus, the longer mesial cantilever beam led to significant deformation closer to the mesial end, with the maximum deformation reaching 3.823 mm. Titanium meshes with four retention pins and those with pins at the buccal mesial and median exhibited uniform stress distribution without notable stress concentrations. Meshes with three retention pins showed stress concentrations on the buccal side and around the retention pins. For meshes with pins located at the buccal mesial and mandibular ramus, or at the buccal median and mandibular ramus, stress was concentrated around the two pins. Maximum stresses for models A, B, C, D and E were 183.29, 451.30, 722.22, 904.84 and 1462.40 MPa, respectively. Conclusion Increasing the number of retention pins reduces the displacement of individualized titanium mesh under load. For the same number of retention pins, their positions significantly influence mesh displacement.

Key words: Individualized titanium mesh, Guided bone regeneration, 3D finite element analysis, Bone augmentation