中国口腔种植学杂志 ›› 2024, Vol. 29 ›› Issue (4): 391-397.DOI: 10.12337/zgkqzzxzz.2024.08.016
• 综述 • 上一篇
龚静, 博梦, 方蛟, 王林
收稿日期:
2024-04-03
出版日期:
2024-08-30
发布日期:
2024-08-16
通讯作者:
方蛟,Email:fangjiao@jlu.edu.cn,电话:0431-88796025;王林,Email:wanglin1982@jlu.edu.cn,电话:0431-88796025
作者简介:
龚静 硕士研究生,研究方向:口腔多功能纳米材料的生物学应用; 王林 医学博士、教授、 主任医师、博士研究生导师,研究方向:口腔种植修复材料,口腔多功能纳米材料; 方蛟 医学博士、副主任医师,研究方向:口腔种植修复学、材料学
基金资助:
Gong Jing, Bo Meng, Fang Jiao, Wang Lin
Received:
2024-04-03
Online:
2024-08-30
Published:
2024-08-16
Contact:
Fang Jiao, Email: Supported by:
摘要: 光热疗法(photothermal therapy,PTT)作为一种新兴的治疗技术,具有临床操作便捷、可控性良好和无创性、易被患者接受等特点,逐渐在口腔种植体周疾病的治疗中得到了关注。其中,近红外光响应的PTT良好地弥补了传统治疗方式中存在的强度、深度不足的问题。同时还具有减轻周围组织损伤、促进愈合等特点。本文对光热疗法在种植体周疾病中的应用策略进行综述,为其在口腔抗菌治疗领域的临床应用和发展提供参考。
龚静,博梦,方蛟,等. 光热疗法在种植体周疾病治疗中的应用策略[J]. 中国口腔种植学杂志, 2024, 29(4): 391-397. DOI: 10.12337/zgkqzzxzz.2024.08.016
Gong Jing, Bo Meng, Fang Jiao, Wang Lin. Strategies for the use of photothermal therapy in peri-implant diseases[J].Chinese Journal of Oral Implantology, 2024, 29(4): 391-397.DOI: 10.12337/zgkqzzxzz.2024.08.016.
[1] Apaza-Bedoya K, Galarraga-Vinueza ME, Correa BB, et al.Prevalence, risk indicators, and clinical characteristics of peri-implant mucositis and peri-implantitis for an internal conical connection implant system: a multicenter cross-sectional study[J]. J Periodontol, 2024, 95(6):582-593. DOI: 10.1002/JPER.23-0355. [2] Ramanauskaite A, Juodzbalys G.Diagnostic principles of peri-implantitis: a systematic review and guidelines for peri-implantitis diagnosis proposal[J]. J Oral Maxillofac Res, 2016, 7(3):e8. DOI: 10.5037/jomr.2016.7308. [3] Ramanauskaite A, Becker K, Schwarz F.Clinical characteristics of peri-implant mucositis and peri-implantitis[J]. Clin Oral Implants Res, 2018, 29(6): 551-556.DOI: 10.1111/clr.13152. [4] Schwarz F, Derks J, Monje A, et al.Peri-implantitis[J]. J Periodontol, 2018, 89(Suppl 1):S267-S290. DOI: 10.1002/JPER.16-0350. [5] Lee CT, Huang YW, Zhu L, et al.Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis[J]. J Dent. 2017,62:1-12. DOI: 10.1016/j.jdent.2017.04.011. [6] Heitz-Mayfield L J, Lang N P. Comparative biology of chronic and aggressive periodontitis vs. Peri-implantitis[J]. Periodontol 2000, 2010, 53: 167-181.DOI: 10.1111/j.1600-0757.2010.00348.x. [7] Li D, Tan X, Zheng L, et al.A dual-antioxidative coating on transmucosal component of implant to repair connective tissue barrier for treatment of peri-implantitis[J]. Adv Healthc Mater, 2023, 12(30):e2301733. DOI: 10.1002/adhm.202301733. [8] Wang H, Liu Y, Li W, et al.Microbiota in gingival crevicular fluid before and after mechanical debridement with antimicrobial photodynamic therapy in peri-implantitis[J]. Front Cell Infect Microbiol, 2021, 11:777627. DOI: 10.3389/fcimb.2021.777627. [9] Chen Y, Gao Y, Chen Y, et al.Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment[J]. J Control Release.2020,328:251-262. DOI: 10.1016/j.jconrel.2020.08.055. [10] Lin J, He Z, Liu F, et al.Hybrid hydrogels for synergistic periodontal antibacterial treatment with sustained drug release and NIR-responsive photothermal effect[J]. Int J Nanomedicine, 2020, 15:5377-5387. DOI: 10.2147/IJN.S248538. [11] Geng B, Li Y, Hu J, et al.Graphitic-N-doped graphene quantum dots for photothermal eradication of multidrug-resistant bacteria in the second near-infrared window[J]. J Mater Chem B, 2022, 10(17):3357-3365. DOI: 10.1039/d2tb00192f. [12] Yin Q, Tan L, Lang Q, et al.Plasmonic molybdenum oxide nanosheets supported silver nanocubes for enhanced near-infrared antibacterial activity: synergism of photothermal effect, silver release and photocatalytic reactions[J]. Applied Catalysis B: Environmental, 2018, 224: 671-680.DOI: 10.1016/J.apcatb.2017.11.024. [13] Wang J, Xuan J, Liu Y, et al.NIR-dependent photothermal-photodynamic synergistic antibacterial mechanism for titanium carbide nanosheets intercalated and delaminated by tetramethylammonium hydroxide[J]. Biomater Adv, 2023, 152:213492. DOI: 10.1016/j.bioadv.2023.213492. [14] Qu Y, Zhu X, Kong R, et al. Dual-functional antibacterial hybrid film with antifouling and NIR-activated bactericidal properties [J]. Composites,Part B: Engineering, 2022, 244(9): 110143.1-110143.10. [15] Tuchin VV, Genina EA, Tuchina ES, et al.Optical clearing of tissues: issues of antimicrobial phototherapy and drug delivery[J]. Adv Drug Deliv Rev, 2022, 180:114037. DOI: 10.1016/j.addr.2021.114037. [16] Li J, Zhang W, Ji W, et al.Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications[J]. J Mater Chem B, 2021, 9(38):7909-7926. DOI: 10.1039/d1tb01310f. [17] Fuzil N S, Othman N H, Alias N H, et al.A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production[J].Desalination,2021,517:115259.DOI: 10.1016/J. AESAL.2021.115295. [18] Xu Y, Wang K, Zhao S, et al.Rough surface NiFe2O4@Au/polydopamine with a magnetic field enhanced photothermal antibacterial effect[J]. Chemical Engineering Journal, 2022, 437: 135282.DOI: 10.1016/j.cej.2022.135282. [19] Chen Q, Li S, Zhao W, et al.A rapid-triggered approach towards antibacterial hydrogel wound dressing with synergic photothermal and sterilization profiles[J]. Biomater Adv, 2022, 138:212873. DOI: 10.1016/j.bioadv.2022.212873. [20] Bermúdez-Jiménez C, Romney MG, Roa-Flores SA, et al.Hydrogel-embedded gold nanorods activated by plasmonic photothermy with potent antimicrobial activity[J]. Nanomedicine, 2019, 22:102093. DOI: 10.1016/j.nano.2019.102093. [21] Shao L, Majumder S, Liu Z, et al.Light activation of gold nanorods but not gold nanospheres enhance antibacterial effect through photodynamic and photothermal mechanisms[J]. J Photochem Photobiol B. 2022, 231:112450. DOI: 10.1016/j.jphotobiol.2022.112450. [22] Li J, Pan G, Zyryanov GV, et al.Positively charged semiconductor conjugated polymer nanomaterials with photothermal activity for antibacterial and antibiofilm activities in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2023, 15(34):40864-40876. DOI: 10.1021/acsami.3c00556. [23] He S, Jiang Y, Li J, et al.Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer[J]. Angew Chem Int Ed Engl, 2020, 59(26):10633-10638. DOI: 10.1002/anie.202003004. [24] Mei L, Lin C, Cao F, et al.Amino-functionalized graphene oxide for the capture and photothermal inhibition of bacteria[J]. ACS Applied Nano Materials, 2019, 2(5): 2902-2908.DOI:10.1021/acsanm.9b00348. [25] Xin Q, Shah H, Nawaz A, et al.Antibacterial carbon-based nanomaterials[J]. Adv Mater, 2019, 31(45):e1804838. DOI: 10.1002/adma.201804838. [26] Zhang C, Wang K, Guo X, et al.A cationic conjugated polymer with high 808 nm NIR-triggered photothermal conversion for antibacterial treatment[J]. Journal of Materials Chemistry C, 2022, 10(7): 2600-2607. [27] He Y, Liao S, Wang Y.Photothermal polymers in near infrared window[J]. Chinese Journal of Chemistry, 2021, 39(6): 1435-1442.DOI: 10.1002/cjoc.202000637. [28] Zhou B, Li Y, Niu G, et al.Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer[J]. ACS Appl Mater Interfaces, 2016, 8(44):29899-29905. DOI: 10.1021/acsami.6b07838. [29] Bao LH, Liu ZH.Near-infrared absorption photothermal conversion polyurethane film for energy storage[J]. Journal of Polymer Research, 2021, 28:1-10.DOI:10.1007/s10965-020-02393-x. [30] Qiu F, Gong J, Tong G, et al.Near-infrared light-induced polymerizations: mechanisms and applications[J]. Chempluschem, 2024, 89(6):e202300782. DOI: 10.1002/cplu.202300782. [31] Chen Y, Li L, Chen W, et al.Near-infrared small molecular fluorescent dyes for photothermal therapy[J]. Chinese Chemical Letters, 2019, 30(7): 1353-1360. [32] Thakur MK, Gupta A, Ghosh S, et al.Graphene-conjugated upconversion nanoparticles as fluorescence-tuned photothermal nanoheaters for desalination[J]. ACS Appl Nano Mater, 2019, 2(4): 2250-2259. DOI: DOI10.1021/acsanm.9b00186. [33] Li Y, Wang X, Gao L, et al.Aptamer-conjugated gold nanostars for targeted cancer photothermal therapy[J]. Journal of Materials Science, 2018, 53(20): 14138-14148.DOI: 10.1007/s10853-018-2668-7 [34] Panikkanvalappil SR, Hooshmand N, El-Sayed MA.Intracellular assembly of nuclear-targeted gold nanosphere enables selective plasmonic photothermal therapy of cancer by shifting their absorption wavelength toward near-infrared region[J]. Bioconjug Chem, 2017, 28(9):2452-2460. DOI: 10.1021/acs.bioconjchem.7b00427. [35] Shen J, Liu J, Fan X, et al.Unveiling the antibacterial strategies and mechanisms of MoS(2): a comprehensive analysis and future directions[J]. Biomater Sci, 2024, 12(3):596-620. DOI: 10.1039/d3bm01030a. [36] Oh SL.Peri-Implantitis associated with a pre-existing pathology[J]. J Oral Implantol, 2017, 43(3):232-236. DOI: 10.1563/aaid-joi-D-16-00211. [37] Sánchez-Martos R, Samman A, Bouazza-Juanes K, et al.Clinical effect of diode laser on peri-implant tissues during non-surgical peri-implant mucositis therapy: randomized controlled clinical study[J]. J Clin Exp Dent, 2020, 12(1):e13-e21. DOI: 10.4317/medoral.56424. [38] Aimetti M, Mariani GM, Ferrarotti F, et al.Adjunctive efficacy of diode laser in the treatment of peri-implant mucositis with mechanical therapy: a randomized clinical trial[J]. Clin Oral Implants Res, 2019, 30(5):429-438. DOI: 10.1111/clr.13428. [39] Sánchez-Martos R, Kronkah NA, Arias-Herrera S.Comparison of photothermal and photodynamic diode laser therapy in patients with peri-implant mucositis: a systematic review[J]. J Clin Exp Dent. 2023, 15(9):e760-e772. DOI: 10.4317/jced.60711. [40] Chen Z, Wang Z, Qiu W, et al.Overview of antibacterial strategies of dental implant materials for the prevention of peri-implantitis[J]. Bioconjug Chem, 2021, 32(4):627-638. DOI: 10.1021/acs.bioconjchem.1c00129. [41] Xu B, Li Z, Ye Q, et al.Mild photothermal effect of titania nanotubes array as a promising solution for peri-implantitis[J]. Materials Design, 2022, 217:110641. DOI: 10.1016/j.matdes.2022.110641. [42] Li B, Liu F, Ye J, et al.Regulation of macrophage polarization through periodic photo-thermal treatment to facilitate osteogenesis[J]. Small, 2022, 18(38):e2202691. DOI: 10.1002/smll.202202691. [43] Konishi D, Hirata E, Takano Y, et al.Near-infrared light-boosted antimicrobial activity of minocycline/hyaluronan/carbon nanohorn composite toward peri-implantitis treatments[J]. Nanoscale, 2024,16(28):13425-13434. DOI: 10.1039/d4nr01036a. [44] Wu Y, Liao Q, Wu L, et al.ZnL(2)-BPs integrated bone scaffold under sequential photothermal mediation: a win-win strategy delivering antibacterial therapy and fostering osteogenesis thereafter[J]. ACS Nano, 2021, 15(11):17854-17869. DOI: 10.1021/acsnano.1c06062. [45] Gao P, Zuo Y, Yang Y, et al.Multifunctional photothermal PB@EGCG-Sr nanocoating design on titanium surface: to achieve short-term rapid osseointegration and on-demand photothermal long-term osteogenesis[J]. Chemical Engineering Journal, 2023, 474:145608. DOI: 10.1016/j.cej.2023.145608. [46] Xiao F, Huang CX, Dai JH, et al.In situ fabrication of NIR-II responsive TiO2、bio-metasurface for photothermal antibacterial and enhanced osseointegration[J]. Ceramics International, 2024, 50(16): 27689-27698.DOI: 10.1016/j.ceramint.2024.05.066. [47] Wang Y, Miron RJ, Zhang X, et al.Nanocages and cell-membrane display technology as smart biomaterials[J]. Periodontol 2000, 2024, 94(1):180-191. DOI: 10.1111/prd.12514. [48] Guo Q, Li P, Zhang Y, et al.Polydopamine-curcumin coating of titanium for remarkable antibacterial activity via synergistic photodynamic and photothermal properties[J]. Photochem Photobiol, 2024, 100(3):699-711. DOI: 10.1111/php.13870. [49] Lu S, Li R, Chai M, et al.Nanostructured Cu-doped TiO(2) with photothermal effect for prevention of implant-associated infection[J]. Colloids Surf B Biointerfaces, 2022, 217:112695. DOI: 10.1016/j.colsurfb.2022.112695. [50] Xu K, Yuan Z, Ding Y, et al.Near-infrared light triggered multi-mode synergetic therapy for improving antibacterial and osteogenic activity of titanium implants[J]. Applied Materials Today, 2021, 24:101155.DOI:10.1016/j.apmt.2021.101155. [51] Yu YL, Wu JJ, Lin CC, et al.Elimination of methicillin-resistant staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration[J]. Mil Med Res, 2023, 10(1):21. DOI: 10.1186/s40779-023-00454-y. [52] Xue Y, Zhang L, Liu F, et al.Fluoride releasing photothermal responsive TiO(2) matrices for antibiosis, biosealing and bone regeneration[J]. J Control Release, 2023, 363:657-669. DOI: 10.1016/j.jconrel.2023.10.016. [53] Shen L, Hu J, Yuan Y, et al.Photothermal-promoted multi-functional gallic acid grafted chitosan hydrogel containing tannic acid miniaturized particles for peri-implantitis[J]. Int J Biol Macromol, 2023, 253(Pt 6):127366. DOI: 10.1016/j.ijbiomac.2023.127366. [54] Jiang Y, Hua Z, Geng Q, et al.Carbon quantum dots carrying antibiotics for treating dental implant bacterial infections following photothermal therapy[J]. Nano, 2024, 19(1): 2450004. DOI:10.1142/S1793292024500048. [55] Xiao L, Feng M, Chen C, et al.Microenvironment-regulating drug delivery nanoparticles for treating and preventing typical biofilm-induced oral diseases[J]. Adv Mater, 2023 :e2304982. DOI: 10.1002/adma.202304982. [56] Zhang W, Wang XL, Ma GaoQ,et al.Fluorescence and photothermal dual-readout phthalocyanine-fluorescein conjugate for detection and photothermal sterilization of anaerobic bacteria[J].Sensors Actuators: B Chem,2023.392:134042.DOI:10.1016/j.snb.2023.134042. [57] Ma L, Zhou Y, Zhang Z, et al. Multifunctional bioactive Nd-Ca-Si glasses for fluorescence thermometry, photothermal therapy,burn tissue repair[J]. Sci Adv, 2020, 6(32):eabb1311. DOI: 10.1126/sciadv.abb1311. |
[1] | 陈真琪, 晏奇, 陈艳, 施斌. 平台对接式种植体生物学并发症:一项回顾性病例分析[J]. 中国口腔种植学杂志, 2024, 29(4): 352-357. |
[2] | 阳婷, 胡文杰. 种植体周炎治疗中针对种植体表面的去污策略[J]. 中国口腔种植学杂志, 2024, 29(4): 385-390. |
[3] | 徐淑兰, 朱元希. 种植体周炎的治疗决策和预后评估[J]. 中国口腔种植学杂志, 2023, 28(6): 394-401. |
[4] | 闫福华, 宋诗源. 种植体周炎发病影响因素及诊治新进展[J]. 中国口腔种植学杂志, 2023, 28(6): 402-409. |
[5] | 欧艳晶, 陆洁, 陈江. 亲水性钛表面负载肉桂醛抑制牙龈卟啉单胞菌的作用研究[J]. 中国口腔种植学杂志, 2023, 28(6): 410-416. |
[6] | 孙菲, 王翠, 胡文杰. Er,Cr:YSGG激光治疗种植体周炎的临床效果评价[J]. 中国口腔种植学杂志, 2023, 28(6): 417-423. |
[7] | 林志辉, 王希, 满毅. 应用结缔组织平台技术治疗美学区种植体周炎合并种植体下沉一例及文献回顾[J]. 中国口腔种植学杂志, 2023, 28(6): 424-429. |
[8] | 宋嘉颖, 陈卓凡, 黄宝鑫. 种植修复患者随访维护依从性及影响因素:现状与展望[J]. 中国口腔种植学杂志, 2023, 28(6): 430-436. |
[9] | 董潇潇. 种植体周炎治疗时种植体表面的清洁去污处理[J]. 中国口腔种植学杂志, 2023, 28(6): 437-443. |
[10] | 杨波, 韩泽奎, 代浩然, 张亮, 臧旖欣, 王心彧, 宿玉成. 聚四氟乙烯膜改性个性化钛网的制备及其抗菌性能研究[J]. 中国口腔种植学杂志, 2023, 28(6): 451-459. |
[11] | 蔡国鑫. 骨结合种植体取出技术应用进展[J]. 中国口腔种植学杂志, 2023, 28(4): 279-284. |
[12] | 唐礼, 陈利益. 减少种植粘接固位全冠修复粘接剂残留的研究进展[J]. 中国口腔种植学杂志, 2023, 28(4): 290-294. |
[13] | 罗桂生, 刘雨蒙, 王鹏来, 袁长永. 微量元素改性PEEK种植体的研究进展[J]. 中国口腔种植学杂志, 2023, 28(2): 109-113. |
[14] | 程雯, 马晓婷, 申亚杰, 吕守印, 韶波. 纳米银抗菌材料在口腔种植应用中的研究进展[J]. 中国口腔种植学杂志, 2023, 28(1): 40-46. |
[15] | 中华口腔医学会口腔种植专业委员会. 上颌窦底提升并发症的专家共识:种植体周病(第一版)[J]. 中国口腔种植学杂志, 2022, 27(3): 135-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||