[1] Padovani GC, Feitosa VP, Sauro S, et al.Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects[J]. Trends Biotechnol, 2015,33(11):621-636.DOI: 10.1016/j.tibtech.2015.09.005. [2] Comley PN. The ASTM international standard test method for determining the superplastic properties of metallic materials[C]. Mater Sci Forum,2007,551-552:105-110. DOI:10.4028/www.scientific.net/msf.551-552.105. [3] Shukla R, Bansal V, Chaudhary M, et al.Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview[J]. Langmuir, 2005,21(23):10644-10654.DOI: 10.1021/la0513712. [4] Heo DN, Ko WK, Lee HR, et al.Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration[J]. J Colloid Interface Sci, 2016,469:129-137.DOI: 10.1016/j.jcis.2016.02.022. [5] Madeira S, Barbosa A, Moura C G, et al.Aunps and agμps-functionalized zirconia surfaces by hybrid laser technology for dental implants[J]. Ceram Int, 2020, 46(6): 7109-7121. [6] Durán N, Marcato PD, Durán M, et al.Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants[J]. Appl Microbiol Biotechnol,2011,90(5):1609-1624.DOI: 10.1007/s00253-011-3249-8. [7] Besinis A, De Peralta T, Handy RD.The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on streptococcus mutans using a suite of bioassays[J]. Nanotoxicology,2014,8(1):1-16. DOI: 10.3109/17435390.2012.742935. [8] Khorrami S, Zarrabi A, Khaleghi M, et al.Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties[J]. Int J Nanomedicine, 2018,13:8013-8024. DOI: 10.2147/IJN.S189295. [9] Durán N, Nakazato G, Seabra AB.Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments[J]. Appl Microbiol Biotechnol,2016,100(15):6555-6570.DOI: 10.1007/s00253-016-7657-7. [10] Liao C, Li Y, Tjong SC.Bactericidal and cytotoxic properties of silver nanoparticles[J]. Int J Mol Sci,2019,20(2):449.DOI: 10.3390/ijms20020449. [11] Cheng L, Weir MD, Xu HH, et al.Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms[J]. J Biomed Mater Res B Appl Biomater,2012,100(5):1378-1386.DOI: 10.1002/jbm.b.32709. [12] Zhou W, Jia Z, Xiong P, et al.Bioinspired and biomimetic AgNPs/entamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications[J]. ACS Appl Mater Interfaces,2017,9(31):25830-25846.DOI: 10.1021/acsami.7b06757. [13] Huh AJ, Kwon YJ.“Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era[J]. J Control Release,2011,156(2):128-145. DOI: 10.1016/j.jconrel.2011.07.002. [14] Chatterjee AK, Chakraborty R, Basu T.Mechanism of antibacterial activity of copper nanoparticles[J]. Nanotechnology, 2014,25(13):135101. DOI:10.1088/0957-4484/25/13/135101. [15] Ermini ML, Voliani V.Antimicrobial nano-agents: the copper age[J]. ACS Nano, 2021,15(4):6008-6029. DOI: 10.1021/acsnano.0c10756. [16] Chambers C, Stewart SB, Su B, et al.Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers[J]. Dent Mater,2017,33(3):e115-e123. DOI: 10.1016/j.dental.2016.11.008. [17] Blecher K, Nasir A, Friedman A.The growing role of nanotechnology in combating infectious disease[J]. Virulence, 2011,2(5):395-401. DOI: 10.4161/viru.2.5.17035. [18] Allahverdiyev AM, Abamor ES, Bagirova M, et al.Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites[J]. Future Microbiol,2011,6(8):933-940. DOI: 10.2217/fmb.11.78. [19] 李振霞, 薛晶, 陈婷婷, 等. 纳米二氧化钛对正畸粘接剂抗菌性与拉伸粘接强度的影响[J]. 口腔医学,2016,36(7):591-594. [20] Koo RH, Cury JA.Soluble calcium/SMFP dentifrice: effect on enamel fluoride uptake and remineralization[J]. Am J Dent,1998,11(4):173-176. [21] Kulshrestha S, Khan S, Hasan S, et al.Calcium fluoride nanoparticles induced suppression of streptococcus mutans biofilm: an in vitro and in vivo approach[J]. Appl Microbiol Biotechnol,2016,100(4):1901-1914.DOI: 10.1007/s00253-015-7154-4. [22] Hajipour MJ, Fromm KM, Ashkarran AA, et al.Antibacterial properties of nanoparticles[J]. Trends Biotechnol,2012,30(10):499-511. DOI: 10.1016/j.tibtech.2012.06.004. [23] Król A, Pomastowski P, Rafińska K, et al.Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism[J]. Adv Colloid Interface Sci,2017,249:37-52. DOI: 10.1016/j.cis.2017.07.033. [24] Huang Z, Zheng X, Yan D, et al.Toxicological effect of ZnO nanoparticles based on bacteria[J]. Langmuir, 2008,24(8):4140-4144. DOI: 10.1021/la7035949. [25] Xu Y, Wang C, Hou J, et al.Effects of ZnO nanoparticles and Zn(2+) on fluvial biofilms and the related toxicity mechanisms[J]. Sci Total Environ,2016,544:230-237. DOI: 10.1016/j.scitotenv.2015.11.130. [26] Abdulkareem EH, Memarzadeh K, Allaker RP, et al.Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials[J]. J Dent,2015,43(12):1462-1469.DOI: 10.1016/j.jdent.2015.10.010. [27] Friedman AJ, Phan J, Schairer DO, et al.Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles:a targeted therapy for cutaneous pathogens[J]. J Invest Dermatol,2013,133(5):1231-1239. DOI: 10.1038/jid.2012.399. [28] Ma Y, Zhou T, Zhao C.Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials[J]. Carbohydr Res,2008,343(2):230-237. DOI: 10.1016/j.carres.2007.11.006. [29] Melo M, Weir MD, Passos VF, et al.Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization[J]. Artif Cells Nanomed Biotechnol,2017,45(8):1778-1785. DOI: 10.1080/21691401.2017.1290644. [30] Balhaddad AA, Kansara AA, Hidan D, et al.Toward dental caries: exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials[J]. Bioact Mater,2019,4(1):43-55. DOI: 10.1016/j.bioactmat.2018.12.002. [31] Iafisco M, Degli Esposti L, Ramírez-Rodríguez GB, et al.Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization[J]. Sci Rep,2018,8(1):17016. DOI: 10.1038/s41598-018-35258-x. [32] Shen P, Walker GD, Yuan Y, et al.Importance of bioavailable calcium in fluoride dentifrices for enamel remineralization[J]. J Dent, 2018,78:59-64.DOI: 10.1016/j.jdent.2018.08.005. [33] Salman NR, ElTekeya M, Bakry N, et al. Comparison of remineralization by fluoride varnishes with and without casein phosphopeptide amorphous calcium phosphate in primary teeth[J]. Acta Odontol Scand, 2019,77(1):9-14.DOI: 10.1080/00016357.2018.1490967. [34] Huang S, Gao S, Cheng L, et al.Combined effects of nano-hydroxyapatite and galla chinensis on remineralisation of initial enamel lesion in vitro[J]. J Dent,2010,38(10):811-819. DOI: 10.1016/j.jdent.2010.06.013. [35] Hannig M, Hannig C.Nanomaterials in preventive dentistry[J]. Nat Nanotechnol, 2010,5(8):565-569.DOI: 10.1038/nnano.2010.83. [36] Roveri N, Battistella E, Bianchi CL, et al.Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects[J]. Journal of Nanomaterials. 2009: 9.DOI:10.1155/2009/746383. [37] Vandiver J, Dean D, Patel N, et al.Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy[J]. Biomaterials,2005,26(3):271-283. DOI: 10.1016/j.biomaterials.2004.02.053. [38] Esteves-Oliveira M, Santos NM, Meyer-Lueckel H, et al.Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro[J]. Clin Oral Investig, 2017,21(1):291-300. DOI:10.1007/s00784-016-1789-0. [39] Daas I, Badr S, Osman E.Comparison between fluoride and nano-hydroxyapatite in remineralizing initial enamel lesion: an in vitro study[J]. J Contemp Dent Pract,2018,19(3):306-312. [40] Mao HY, Laurent S, Chen W, et al.Graphene: promises, facts, opportunities, and challenges in nanomedicine[J]. Chem Rev,2013,113(5):3407-3424.DOI: 10.1021/cr300335p. [41] Han X, Li S, Peng Z, et al.Interactions between carbon nanomaterials and biomolecules[J]. J Oleo Sci, 2016,65(1):1-7.DOI: 10.5650/jos.ess15248. [42] Garmendia N, Santacruz I, Moreno R, et al.Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing[J]. J Mater Sci Mater Med, 2010,21(5):1445-1451. DOI:10.1007/s10856-010-4023-7. [43] Montoya C, Arola D, Ossa EA.Importance of tubule density to the fracture toughness of dentin[J].Arch Oral Biol,2016,67:9-14.DOI: 10.1016/j.archoralbio.2016.03.003. [44] Toledano-Osorio M, Osorio E, Aguilera FS, et al.Improved reactive nanoparticles to treat dentin hypersensitivity[J]. Acta Biomater, 2018,72:371-380.DOI: 10.1016/j.actbio.2018.03.033. [45] Liao J, Li Y, Li H, et al.Preparation, bioactivity and mechanism of nano-hydroxyapatite/sodium alginate/chitosan bone repair material[J].J Appl Biomater Funct Mater, 2018,16(1):28-35.DOI: 10.5301/jabfm.5000372. [46] 冯庆玲, 崔福斋, 张伟. 纳米羟基磷灰石/胶原骨修复材料[J]. 中国医学科学院学报,2002,24(2):124-128. [47] Ribeiro N, Sousa SR, van Blitterswijk CA, et al. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration[J]. Biofabrication,2014,6(3):035015. DOI: 10.1088/1758-5082/6/3/035015. [48] Zhao W, He B, Zhou A, et al.D-RADA16-RGD-reinforced nano-hydroxyapatite/polyamide 66 ternary biomaterial for bone formation[J]. Tissue Eng Regen Med,2019,16(2):177-189. DOI: 10.1007/s13770-018-0171-5. [49] Xiang M, Zhu M, Yang Z, et al.Dual-functionalized apatite nanocomposites with enhanced cytocompatibility and osteogenesis for periodontal bone regeneration[J]. ACS Biomater Sci Eng,2020,6(3):1704-1714.DOI: 10.1021/acsbiomaterials.9b01893. [50] 吴晓楠. 纳米羟基磷灰石复合电纺纤维膜诱导牙周膜细胞骨化分化的研究[D].南京大学, 2015. [51] Ko WK, Heo DN, Moon HJ, et al.The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells[J]. J Colloid Interface Sci,2015,438:68-76. DOI: 10.1016/j.jcis.2014.08.058. [52] Lee D, Heo DN, Lee SJ, et al.Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis[J]. Appl Surf Sci, 2018, 432: 300-307. DOI:10.1016/j.apsusc.2017.05.237. [53] 张金超, 刘丹丹, 易长青, 等. 金纳米粒子对成骨细胞MC3T3-E1增殖、分化和矿化功能的影响[J]. 科学通报,2010,55(06):435-441. [54] Wieckiewicz M, Boening KW, Grychowska N, et al.Clinical application of chitosan in dental specialities[J]. Mini Rev Med Chem, 2017,17(5):401-409.DOI: 10.2174/1389557516666160418123054. [55] 陈宏伟,赵利芬. 壳聚糖及其衍生物在牙周应用的研究进展[J]. 医学综述,2014,20(1):66-68. DOI:10.3969/j.issn.1006-2084.2014.01.023. [56] Pokharkar V, Dhar S, Bhumkar D, et al.Acute and subacute toxicity studies of chitosan reduced gold nanoparticles: a novel carrier for therapeutic agents[J]. J Biomed Nanotechnol,2009,5(3):233-239. DOI: 10.1166/jbn.2009.1027. |