[1] Albrektsson T, Johansson C.Osteoinduction, osteoconduction and osseointegration[J].Eur Spine J, 2001, 10(Suppl 2): S96-S101. DOI: 10.1007/s005860100282. [2] 张洪凯. 骨移植材料在口腔疾病患者中的应用研究进展[J].医疗装备, 2019,32(22):198-199. Zhang HK.Research progress on the application of bone graft materials in patients with oral diseases[J].Med Equip, 2019,32(22):198-199. [3] Liu Y, Liu H, Guo S, et al.Applications of bacterial cellulose-based composite materials in hard tissue regenerative medicine[J]. Tissue Eng Regen Med, 2023,20(7):1017-1039. DOI: 10.1007/s13770-023-00575-4. [4] 田静静, 李嘉浩, 李春旭, 等. 纳米技术在骨科的应用进展[J].中华骨与关节外科杂志, 2021,14(10):837-842. DOI: 10.3969/j.issn.2095-9958.2021.10.06. Tian JJ, Li JH, Li CX, et al.Applications progress of nanoscience and nanotechnology in orthopedics[J]. Chin J Bone Joint Surg, 2021,14(10):837-842. DOI: 10.3969/j.issn.2095-9958.2021.10.06. [5] Wu J, Zheng X, Lv Y, et al.Preparation and characterization of GO/ZnO/Ag nanocomposites and their synergistic antibacterial effect on Streptococcus mutans[J]. AIP Adv, 2013,13(3):035313. DOI: 10.1063/5.0137874. [6] Wu J, Wang C, Zhang S, et al.Preparation and properties of GO/ZnO/nHAp composite microsphere bone regeneration material[J]. Micromachines (Basel), 2024,15(1):122. DOI: 10.3390/mi15010122. [7] 艾子政, 董谢平. 新西兰兔骨缺损模型的文献综述[J].中国矫形外科杂志, 2021,29(20):1863-1867. DOI: 10.3977/j.issn.1005-8478.2021.20.09. Ai ZZ, Dong XP.A review on bone defect models in New Zealand rabbits[J]. Orthop J Chin,2021,29(20):1863-1867. DOI: 10.3977/j.issn.1005-8478.2021.20.09. [8] Liu J, Mao K, Liu Z, et al.Injectable biocomposites for bone healing in rabbit femoral condyle defects[J]. PLoS One, 2013,8(10):e75668. DOI: 10.1371/journal.pone.0075668. [9] Haghjooy Javanmard S, Anari J, Zargar Kharazi A, et al.In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers[J]. J Biomater Appl, 2016,31(3):438-449. DOI: 10.1177/0885328216652068. [10] 张洪睿. 氧化石墨烯复合材料支架促进膝关节软骨缺损修复的研究[D].重庆:重庆医科大学, 2024. DOI: 10.27674/d.cnki.gcyku.2024.000914. Zhang HR.Study of graphene oxide composite scaffolds for promoting the repair of knee joint cartilage defects[D]. Chongqing: Chongqing Med Univ,2024. DOI: 10.27674/d.cnki.gcyku.2024.000914. [11] 何秋月, 张桂斋, 郑业萌, 等. 生物医用材料的生物相容性研究现状[J].山东科技大学学报(自然科学版), 2023,42(2):78-87. DOI: 10.16452/j.cnki.sdkjzk.2023.02.009. He QY, Zhang GZ, Zheng YM, et al.Research status of biocompatibility of biomedical materials[J]. J Shandong Univ Sci Technol (Nat Sci),2023,42(2):78-87. DOI: 10.16452/j.cnki.sdkjzk.2023.02.009. [12] 李晨. 再生纤维素/大豆分离蛋白复合微球的制备、改性及其生物相容性评价[D].湖北: 武汉大学, 2018. Li C.Preparation, modification and biocompatibility evaluation of regenerated cellulose/SPI composite beads[D]. Hubei: Wuhan Univ,2008. [13] 唐国柯, 文根, 刘彦斌, 等. 骨缺损修复生物材料的研究进展[J].中华骨与关节外科杂志,2023,16(2):185-192. DOI: 10.3969/j.issn.2095-9958.2023.02.15. Tang GK, Wen G, Liu YB, et al.Research progress of biomaterials for bone defect repair[J]. Chin J Bone Joint Surg, 2023,16(2):185-192. DOI: 10.3969/j.issn.2095-9958. 2023.02.15. [14] 刘克. 3D打印生物支架联合人参皂苷Rg1促进骨修复的作用研究[D].北京:北京协和医学院,2023. DOI: 10.27648/d.cnki.gzxhu.2023.001042. Liu K.Study on the effect of 3D printed biological scaffolds combined with ginsenoside Rg1 in promoting bone repair[D]. Beijing: Peking Union Med Coll, 2023. DOI: 10.27648/d.cnki.gzxhu.2023.001042. [15] 廖建国, 李艳群, 段星泽, 等. 纳米羟基磷灰石/聚合物复合骨修复材料[J].化学进展, 2015,27(Z1):220-228. Liao JG, Li YQ, Duan XZ, et al.Nano-hydroxyapatite/polymer composite bone repair materials[J]. Prog Chem, 2015, 27(Z1): 220-228. [16] Zhong Q, Li W, Su X, et al.Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering[J]. Colloids Surf B Biointerfaces, 2016,143:56-63. DOI: 10.1016/j.colsurfb.2016.03.020. [17] 吾凡别克·巴合提. 羟基磷灰石-氧化石墨烯纳米涂层促进成骨分化及调节巨噬细胞极化的研究[D]. 乌鲁木齐:新疆医科大学, 2023. DOI: 10.27433/d.cnki.gxyku.2023. 000043. Bakyt W.Study on hydroxyapatite-graphene oxide nanocoating promoting osteogenic differentiation and regulating macrophage polarization[D]. Wulumuqi: Xinjiang Med Univ, 2023. DOI: 10.27433/d.cnki.gxyku.2023.000043. [18] 陈丽, 向庆, 代燕, 等. 可诱导组织再生骨植入材料的研究进展[J].贵州师范大学学报(自然科学版), 2022,40(4):100-105. DOI: 10.16614/j.gznuj.zrb.2022.04.015. Chen L, Xiang Q, Dai Y, et al.Research progress on inducible tissue regenerative bone implant materials[J]. J Guizhou Norm Univ (Nat Sci), 2022, 40(4): 100-105. DOI: 10.16614/j.gznuj.zrb.2022.04.015. [19] 王南. BMP2联合bFGF和VEGF仿生协同调控成骨成血管的作用及机制研究[D].重庆:重庆医科大学,2024.DOI:10.27674/d.cnki.gcyku.2024.000137. Wang N.BMP2 combined with bFGF and VEGF biomimetically synergistically regulates osteogenesis and angiogenesis: mechanisms and effects[D]. Chongqing: Chongqing Med Univ, 2024. DOI:10.27674/d.cnki.gcyku. 2024.000137. [20] Karataş E, Karasulu YH, Azizoğlu AG, et al.Dental implants coated with BMP-2- and α-tocopherol-loaded nanofibers enhance osseointegration[J]. Int J Pharm, 2025,670:125136. DOI: 10.1016/J.IJPHARM.2024.125136. [21] Aghali A.Craniofacial bone tissue engineering: current approaches and potential therapy[J]. Cells, 2021,10(11):2993. DOI: 10.3390/cells10112993. [22] Ponomarev LC, Ksiazkiewicz J, Staring MW, et al.The BMP pathway in blood vessel and lymphatic vessel biology[J]. Int J Mol Sci, 2021,22(12):6364. DOI: 10.3390/ijms22126364. [23] 都曼别克·阿曼台, 何惠宇, 韩祥祯. 羟基磷灰石-氧化石墨烯复合涂层促进大鼠骨缺损的修复[J].中国组织工程研究,2025,29(10):8. DOI: 10.12307/2025.224. Amantai D, He HY, Han XZ.Hydroxyapatite-graphene oxide composite coating promotes bone defect repair in rats[J].Chin J Tissue Eng Res, 2025,29(10):8. DOI: 10.12307/2025.224. [24] 尉鹏功, 张泽颖, 鄢晓媛, 等. 纳米氧化锌表面修饰对羟基磷灰石晶须成骨诱导性的影响[C].杭州: 第十六次全国牙体牙髓病学学术大会,2023:95-97. DOI: 10.26914/c.cnkihy.2023.090820. Wei PG, Zhang ZY, Yan XY, et al.Effect of nano-zinc oxide surface modification on osteoinductivity of hydroxyapatite whiskers[C]. Hangzhou: The 16th National Conference on Endodontics, 2023: 95-97. DOI:10.26914/c.cnkihy.2023.090820. |