[1] Sotova C, Yanushevich O, Kriheli N, et al.Dental implants: modern materials and methods of their surface modification[J]. Materials (Basel), 2023,16(23):7383. DOI: 10.3390/ma16237383. [2] Yang BC, Zhou XD, Yu HY, et al.Advances in titanium dental implant surface modification[J]. Hua Xi Kou Qiang Yi Xue Za Zhi, 2019,37(2):124-129. DOI: 10.7518/hxkq.2019.02.002. [3] Hou C, An J, Zhao D, et al.Surface modification techniques to produce micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration[J]. Front Bioeng Biotechnol, 2022,10:835008. DOI: 10.3389/fbioe.2022.835008. [4] Souza J, Bertolini M, Costa RC, et al.Proteomic profile of the saliva and plasma protein layer adsorbed on Ti-Zr alloy: the effect of sandblasted and acid-etched surface treatment[J]. Biofouling, 2020,36(4):428-441. DOI: 10.1080/08927014.2020.1769613. [5] Ramos CB, Costa LNL, Delany MM.Influence of different acid etchings on the superficial characteristics of Ti sandblasted with Al2O3[J]. Materials Res, 2013, 16(5):1006-1014. DOI: 10.1590/S1516-14392013005000067. [6] Eun SM, Son K, Hwang SM, et al.The impact of mechanical debridement techniques on titanium implant surfaces: a comparison of sandblasted, acid-etched, and femtosecond laser-treated surfaces[J]. J Funct Biomater, 2023,14(10):502. DOI: 10.3390/jfb14100502. [7] Sayin Ozel G, Inan O, Secilmis Acar A, et al.Stability of dental implants with sandblasted and acid-etched (SLA) and modified (SLActive) surfaces during the osseointegration period[J]. J Dent Res Dent Clin Dent Prospects, 2021,15(4):226-231. DOI: 10.34172/joddd.2021.037. [8] Wennerberg A, Albrektsson T.Effects of titanium surface topography on bone integration: a systematic review[J]. Clin Oral Implants Res, 2009,20(Suppl 4):S172-S184. DOI: 10.1111/j.1600-0501.2009.01775.x. [9] Schupbach P, Glauser R, Bauer S.Al2O3 particles on titanium dental implant systems following sandblasting and acid-etching process[J]. Int J Biomater, 2019,2019:6318429. DOI: 10.1155/2019/6318429. [10] Nadar YS, Kutty MG, Abdul Aziz AR.Relative effect of sand blasting and acid etching on the surface roughness of pure titanium and titanium alloy for dental implants[J]. Advanced Materials Res, 2014,1043:145-148. DOI: 10.4028/www.scientific.net/amr.1043.145. [11] Gil FJ, Pérez RA, Olmos J, et al.The effect of using Al2O3 and TiO2 in sandblasting of titanium dental implants[J]. J Materials Res, 2022,37:2602-2613. DOI: 10.1557/s43578-022-00534-0. [12] Lan J, Zhang J, Jia X, et al.Optimization design of surface wave electromagnetic acoustic transducers based on simulation analysis and orthogonal test method[J]. Sensors (Basel), 2022,22(2):524. DOI: 10.3390/s22020524. [13] Conserva E, Menini M, Ravera G, et al.The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. an in vitro comparative study[J]. Clin Oral Implants Res, 2013,24(8):880-889. DOI: 10.1111/j.1600-0501.2011.02397.x. [14] Wu Y, Zitelli JP, TenHuisen KS, et al. Differential response of staphylococci and osteoblasts to varying titanium surface roughness[J]. Biomaterials, 2011,32(4):951-960. DOI: 10.1016/j.biomaterials.2010.10.001. [15] Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, et al.Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion[J]. Colloids Surf A Physicochem Eng Asp, 2010,365(1-3):222-229. DOI: 10.1016/j.colsurfa.2009.12.017. [16] Andrukhov O, Huber R, Shi B, et al.Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness[J]. Dent Mater, 2016,32(11):1374-1384. DOI: 10.1016/j.dental.2016.08.217. [17] Stoilov M, Stoilov L, Enkling N, et al.Effects of different titanium surface treatments on adhesion, proliferation and differentiation of bone cells: an in vitro study[J]. J Funct Biomater, 2022,13(3):143. DOI: 10.3390/jfb13030143. [18] Jemat A, Ghazali MJ, Razali M, et al.Surface modifications and their effects on titanium dental implants[J]. Biomed Res Int, 2015,2015:791725. DOI: 10.1155/2015/791725. [19] Menezes H, Naves MM, Costa HL, et al.Effect of surgical installation of dental implants on surface topography and its influence on osteoblast proliferation[J]. Int J Dent, 2018,2018:4089274. DOI: 10.1155/2018/4089274. [20] Ehsan A, Bijan M.Improving the surface roughness of dental implant fixture by considering the size, angle and spraying pressure of sandblast particles[J]. J Bionic Eng, 2024,21(1):303-324. DOI: 10.1007/s42235-023-00422-1. [21] Li HZ, Yan JG, Yan JW, et al.Influence of process parameters of ultrasonic shot peening on surface roughness and hydrophilicity of pure titanium[J]. Surf Coat Tech, 2017,317:38-53. DOI: 10.1016/j.surfcoat.2017.03.044. [22] Peter EM, Michael T, Ronny B, et al.Acoustic evaluation of the impact of moist spherical granules and glass beads[J]. Powder Technol, 2015,278:138-149. DOI: 10.1016/j.powtec.2015.03.023. [23] Mordyuk BN, Prokopenko GI.Ultrasonic impact peening for the surface properties’ management[J]. J Sound Vib, 2007,308(3-5):855-866. DOI: 10.1016/j.jsv.2007.03.054. [24] Kun D, Juan V, Stone Z, et al.Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J]. Acta Mater, 2004,52(20): 5771-5782. DOI: 10.1016/j.actamat.2004.08.031. [25] Sara B, Ghelichi R, Mario G.Numerical and experimental analysis of surface roughness generated by shot peening[J]. Appl Surf Sci, 2019,98:88-102. DOI: 10.1016/j.apsusc.2012.03.111. [26] Hengfeng M, Simon L, Perron C, et al.On the potential applications of a 3D random finite element model for the simulation of shot peening[J]. Adv Eng Softw, 2009,40(10):1023-1038. DOI: 10.1016/j.advengsoft.2009.03.013. [27] Majzoobi GH, Azadikhah K, Nemati J.The effects of deep rolling and shot peening on fretting fatigue resistance of aluminum-7075-T6[J]. Mat Sci Eng A-Struct, 2009,516(1-2): 235-247. DOI: 10.1016/j.msea.2009.03.020. [28] Julie M, Maxence B, Pierre-Emmanuel M, et al.Relation between roughness and processing conditions of AISI 316L stainless steel treated by ultrasonic shot peening[J]. Tribol Int, 2015,82:319-329. DOI: 10.1016/j.triboint.2014.07.013. |